Institute of Biomedical Engineering and Department of Engineering Science, University of Oxford, Oxford, UK.
Biomech Model Mechanobiol. 2011 Feb;10(1):109-32. doi: 10.1007/s10237-010-0221-y. Epub 2010 May 23.
A fluid-solid-growth (FSG) model of saccular cerebral aneurysm evolution is developed. It utilises a realistic two-layered structural model of the internal carotid artery and explicitly accounts for the degradation of the elastinous constituents and growth and remodelling (G&R) of the collagen fabric. Aneurysm inception is prescribed: a localised degradation of elastin results in a perturbation in the arterial geometry; the collagen fabric adapts, and the artery achieves a new homeostatic configuration. The perturbation to the geometry creates an altered haemodynamic environment. Subsequent degradation of elastin is explicitly linked to low wall shear stress (WSS) in a confined region of the arterial domain. A sidewall saccular aneurysm develops, the collagen fabric adapts and the aneurysm stabilises in size. A quasi-static analysis is performed to determine the geometry at diastolic pressure. This enables the cyclic stretching of the tissue to be quantified, and we propose a novel index to quantify the degree of biaxial stretching of the tissue. Whilst growth is linked to low WSS from a steady (systolic) flow analysis, a pulsatile flow analysis is performed to compare steady and pulsatile flow parameters during evolution. This model illustrates the evolving mechanical environment for an idealised saccular cerebral aneurysm developing on a cylindrical parent artery and provides the guidance to more sophisticated FSG models of aneurysm evolution which link G&R to the local mechanical stimuli of vascular cells.
建立了一个用于囊状脑动脉瘤演化的流固生长(FSG)模型。它利用了颈内动脉的真实双层结构模型,并明确考虑了弹性成分的降解以及胶原纤维的生长和重塑(G&R)。规定了动脉瘤的起始:弹性蛋白的局部降解导致动脉几何形状的扰动;胶原纤维适应,动脉达到新的平衡状态。几何形状的扰动会产生改变的血液动力学环境。随后,弹性蛋白的降解与动脉域中受限区域的低壁面切应力(WSS)明确相关。在动脉壁的一侧形成囊状的囊状动脉瘤,胶原纤维适应,动脉瘤的大小稳定。进行准静态分析以确定舒张期压力下的几何形状。这使组织的循环拉伸得以量化,我们提出了一种新的指标来量化组织的双轴拉伸程度。虽然生长与稳态(收缩期)流分析中的低 WSS 相关,但进行脉动流分析以比较演化过程中的稳态和脉动流参数。该模型说明了理想囊状脑动脉瘤在圆柱状母动脉上发育的不断变化的力学环境,并为将 G&R 与血管细胞的局部力学刺激相关联的更复杂的动脉瘤演化 FSG 模型提供了指导。