Suppr超能文献

鉴定三羧酸循环中间体的化学感受器:受体配体的差异趋化反应。

Identification of a chemoreceptor for tricarboxylic acid cycle intermediates: differential chemotactic response towards receptor ligands.

机构信息

Department of Environmental Protection, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain.

出版信息

J Biol Chem. 2010 Jul 23;285(30):23126-36. doi: 10.1074/jbc.M110.110403. Epub 2010 May 24.

Abstract

We report the identification of McpS as the specific chemoreceptor for 6 tricarboxylic acid (TCA) cycle intermediates and butyrate in Pseudomonas putida. The analysis of the bacterial mutant deficient in mcpS and complementation assays demonstrate that McpS is the only chemoreceptor of TCA cycle intermediates in the strain under study. TCA cycle intermediates are abundantly present in root exudates, and taxis toward these compounds is proposed to facilitate the access to carbon sources. McpS has an unusually large ligand-binding domain (LBD) that is un-annotated in InterPro and is predicted to contain 6 helices. The ligand profile of McpS was determined by isothermal titration calorimetry of purified recombinant LBD (McpS-LBD). McpS recognizes TCA cycle intermediates but does not bind very close structural homologues and derivatives like maleate, aspartate, or tricarballylate. This implies that functional similarity of ligands, such as being part of the same pathway, and not structural similarity is the primary element, which has driven the evolution of receptor specificity. The magnitude of chemotactic responses toward these 7 chemoattractants, as determined by qualitative and quantitative chemotaxis assays, differed largely. Ligands that cause a strong chemotactic response (malate, succinate, and fumarate) were found by differential scanning calorimetry to increase significantly the midpoint of protein unfolding (T(m)) and unfolding enthalpy (DeltaH) of McpS-LBD. Equilibrium sedimentation studies show that malate, the chemoattractant that causes the strongest chemotactic response, stabilizes the dimeric state of McpS-LBD. In this respect clear parallels exist to the Tar receptor and other eukaryotic receptors, which are discussed.

摘要

我们报告了 McpS 作为假单胞菌中 6 种三羧酸(TCA)循环中间产物和丁酸盐的特异性化学感受器的鉴定。分析 mcpS 缺陷的细菌突变体和互补测定表明,McpS 是研究菌株中 TCA 循环中间产物的唯一化学感受器。TCA 循环中间产物在根分泌物中大量存在,向这些化合物的趋化作用被认为有助于获得碳源。McpS 具有异常大的配体结合域(LBD),在 InterPro 中未注释,预计包含 6 个螺旋。通过纯化重组 LBD(McpS-LBD)的等温滴定量热法确定了 McpS 的配体谱。McpS 识别 TCA 循环中间产物,但不结合非常接近的结构类似物和衍生物,如马来酸、天冬氨酸或三羟丁酸盐。这意味着配体的功能相似性,如作为同一途径的一部分,而不是结构相似性是主要因素,这推动了受体特异性的进化。通过定性和定量趋化性测定确定的这些 7 种趋化剂的趋化性反应幅度差异很大。通过差示扫描量热法发现,引起强烈趋化性反应的配体(马来酸、琥珀酸和富马酸)显著增加了 McpS-LBD 蛋白展开的中点(T(m)) 和展开焓(DeltaH)。平衡沉降研究表明,引起最强趋化性反应的趋化剂马来酸稳定了 McpS-LBD 的二聚体状态。在这方面,与 Tar 受体和其他真核受体存在明显的相似之处,对此进行了讨论。

相似文献

2
Crystallization and crystallographic analysis of the ligand-binding domain of the Pseudomonas putida chemoreceptor McpS in complex with malate and succinate.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2012 Apr 1;68(Pt 4):428-31. doi: 10.1107/S1744309112004940. Epub 2012 Mar 27.
3
Physiologically relevant divalent cations modulate citrate recognition by the McpS chemoreceptor.
J Mol Recognit. 2011 Mar-Apr;24(2):378-85. doi: 10.1002/jmr.1101.
6
Evidence for chemoreceptors with bimodular ligand-binding regions harboring two signal-binding sites.
Proc Natl Acad Sci U S A. 2012 Nov 13;109(46):18926-31. doi: 10.1073/pnas.1201400109. Epub 2012 Oct 29.
7
McpQ is a specific citrate chemoreceptor that responds preferentially to citrate/metal ion complexes.
Environ Microbiol. 2016 Oct;18(10):3284-3295. doi: 10.1111/1462-2920.13030. Epub 2015 Oct 14.
8
Pseudomonas putida F1 has multiple chemoreceptors with overlapping specificity for organic acids.
Microbiology (Reading). 2013 Jun;159(Pt 6):1086-1096. doi: 10.1099/mic.0.065698-0. Epub 2013 Apr 25.
9
Identification of a Chemoreceptor in That Specifically Mediates Chemotaxis Toward α-Ketoglutarate.
Front Microbiol. 2016 Nov 29;7:1937. doi: 10.3389/fmicb.2016.01937. eCollection 2016.

引用本文的文献

2
Attractant and repellent induce opposing changes in the four-helix bundle ligand-binding domain of a bacterial chemoreceptor.
PLoS Biol. 2023 Dec 11;21(12):e3002429. doi: 10.1371/journal.pbio.3002429. eCollection 2023 Dec.
3
Sensing preferences for prokaryotic solute binding protein families.
Microb Biotechnol. 2023 Sep;16(9):1823-1833. doi: 10.1111/1751-7915.14292. Epub 2023 Aug 7.
4
Three unrelated chemoreceptors provide Pectobacterium atrosepticum with a broad-spectrum amino acid sensing capability.
Microb Biotechnol. 2023 Jul;16(7):1548-1560. doi: 10.1111/1751-7915.14255. Epub 2023 Mar 25.
5
The pH Robustness of Bacterial Sensing.
mBio. 2022 Oct 26;13(5):e0165022. doi: 10.1128/mbio.01650-22. Epub 2022 Sep 26.
6
Multiple detection of both attractants and repellents by the dCache-chemoreceptor SO_1056 of Shewanella oneidensis.
FEBS J. 2022 Nov;289(21):6752-6766. doi: 10.1111/febs.16548. Epub 2022 Jun 24.
7
The Arginine Catabolism-Derived Amino Acid l-ornithine Is a Chemoattractant for .
Microorganisms. 2022 Jan 24;10(2):264. doi: 10.3390/microorganisms10020264.
8
A bacterial chemoreceptor that mediates chemotaxis to two different plant hormones.
Environ Microbiol. 2022 Aug;24(8):3580-3597. doi: 10.1111/1462-2920.15920. Epub 2022 Feb 1.
10
Chemotactic Responses and the Role of Methyl-Accepting Chemotactic Proteins in Ecological Fitness.
Front Plant Sci. 2021 Apr 22;12:650894. doi: 10.3389/fpls.2021.650894. eCollection 2021.

本文引用的文献

1
Microcalorimetry: a response to challenges in modern biotechnology.
Microb Biotechnol. 2008 Mar;1(2):126-36. doi: 10.1111/j.1751-7915.2007.00013.x.
2
Origin and molecular evolution of ionotropic glutamate receptors.
Neurosci Behav Physiol. 2009 Oct;39(8):763-73. doi: 10.1007/s11055-009-9195-6. Epub 2009 Sep 23.
3
Energetics of glutamate receptor ligand binding domain dimer assembly are modulated by allosteric ions.
Proc Natl Acad Sci U S A. 2009 Jul 28;106(30):12329-34. doi: 10.1073/pnas.0904175106. Epub 2009 Jul 15.
4
Chemotaxis to pyrimidines and identification of a cytosine chemoreceptor in Pseudomonas putida.
J Bacteriol. 2009 May;191(9):2909-16. doi: 10.1128/JB.01708-08. Epub 2009 Feb 27.
5
InterPro: the integrative protein signature database.
Nucleic Acids Res. 2009 Jan;37(Database issue):D211-5. doi: 10.1093/nar/gkn785. Epub 2008 Oct 21.
7
Direct evidence for coupling between bacterial chemoreceptors.
J Mol Biol. 2008 Oct 10;382(3):573-7. doi: 10.1016/j.jmb.2008.07.026. Epub 2008 Jul 16.
8
The genome of Clostridium kluyveri, a strict anaerobe with unique metabolic features.
Proc Natl Acad Sci U S A. 2008 Feb 12;105(6):2128-33. doi: 10.1073/pnas.0711093105. Epub 2008 Jan 24.
9
Bacterial chemoreceptors: high-performance signaling in networked arrays.
Trends Biochem Sci. 2008 Jan;33(1):9-19. doi: 10.1016/j.tibs.2007.09.014. Epub 2007 Dec 31.
10
Differential scanning calorimetry.
Methods Cell Biol. 2008;84:115-41. doi: 10.1016/S0091-679X(07)84005-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验