Suppr超能文献

非洲爪蟾胚胎上皮细胞的活细胞成像与定量分析

Live-cell imaging and quantitative analysis of embryonic epithelial cells in Xenopus laevis.

作者信息

Joshi Sagar D, Davidson Lance A

机构信息

Bioengineering, University of Pittsburgh, USA.

出版信息

J Vis Exp. 2010 May 23(39):1949. doi: 10.3791/1949.

Abstract

Embryonic epithelial cells serve as an ideal model to study morphogenesis where multi-cellular tissues undergo changes in their geometry, such as changes in cell surface area and cell height, and where cells undergo mitosis and migrate. Furthermore, epithelial cells can also regulate morphogenetic movements in adjacent tissues(1). A traditional method to study epithelial cells and tissues involve chemical fixation and histological methods to determine cell morphology or localization of particular proteins of interest. These approaches continue to be useful and provide "snapshots" of cell shapes and tissue architecture, however, much remains to be understood about how cells acquire specific shapes, how various proteins move or localize to specific positions, and what paths cells follow toward their final differentiated fate. High resolution live imaging complements traditional methods and also allows more direct investigation into the dynamic cellular processes involved in the formation, maintenance, and morphogenesis of multicellular epithelial sheets. Here we demonstrate experimental methods from the isolation of animal cap tissues from Xenopus laevis embryos to confocal imaging of epithelial cells and simple measurement approaches that together can augment molecular and cellular studies of epithelial morphogenesis.

摘要

胚胎上皮细胞是研究形态发生的理想模型,在形态发生过程中,多细胞组织会发生几何形状的变化,如细胞表面积和细胞高度的变化,同时细胞会进行有丝分裂和迁移。此外,上皮细胞还可以调节相邻组织中的形态发生运动(1)。研究上皮细胞和组织的传统方法包括化学固定和组织学方法,以确定细胞形态或特定感兴趣蛋白质的定位。这些方法仍然有用,并能提供细胞形状和组织结构的“快照”,然而,关于细胞如何获得特定形状、各种蛋白质如何移动或定位到特定位置以及细胞沿着什么路径走向最终分化命运,仍有许多有待了解。高分辨率实时成像补充了传统方法,还能更直接地研究多细胞上皮片形成、维持和形态发生过程中涉及的动态细胞过程。在这里,我们展示了从非洲爪蟾胚胎中分离动物帽组织到上皮细胞共聚焦成像以及简单测量方法的实验方法,这些方法共同可以加强上皮形态发生的分子和细胞研究。

相似文献

2
Microsurgical approaches to isolate tissues from Xenopus embryos for imaging morphogenesis.
Cold Spring Harb Protoc. 2013 Apr 1;2013(4):362-5. doi: 10.1101/pdb.prot073874.
3
Investigating morphogenesis in Xenopus embryos: imaging strategies, processing, and analysis.
Cold Spring Harb Protoc. 2013 Apr 1;2013(4):298-304. doi: 10.1101/pdb.top073890.
4
Assembly of chambers for stable long-term imaging of live Xenopus tissue.
Cold Spring Harb Protoc. 2013 Apr 1;2013(4):366-9. doi: 10.1101/pdb.prot073882.
5
Microscopy tools for quantifying developmental dynamics in Xenopus embryos.
Methods Mol Biol. 2012;917:477-93. doi: 10.1007/978-1-61779-992-1_27.
6
Preparation and use of reporter constructs for imaging morphogenesis in Xenopus embryos.
Cold Spring Harb Protoc. 2013 Apr 1;2013(4):359-61. doi: 10.1101/pdb.prot073866.
7
Epithelial cell division in the Xenopus laevis embryo during gastrulation.
Int J Dev Biol. 2014;58(10-12):775-81. doi: 10.1387/ijdb.140277jt.
8
Applying Tensile and Compressive Force to Animal Cap Tissue.
Cold Spring Harb Protoc. 2020 Mar 2;2020(3):105551. doi: 10.1101/pdb.prot105551.
10
Epithelial machines that shape the embryo.
Trends Cell Biol. 2012 Feb;22(2):82-7. doi: 10.1016/j.tcb.2011.10.005. Epub 2011 Nov 28.

引用本文的文献

2
Relaxation and Noise-Driven Oscillations in a Model of Mitotic Spindle Dynamics.
Bull Math Biol. 2024 Aug 3;86(9):113. doi: 10.1007/s11538-024-01341-w.
4
Xenopus Deep Cell Aggregates: A 3D Tissue Model for Mesenchymal-to-Epithelial Transition.
Methods Mol Biol. 2021;2179:275-287. doi: 10.1007/978-1-0716-0779-4_21.
5
Decoupling the Roles of Cell Shape and Mechanical Stress in Orienting and Cueing Epithelial Mitosis.
Cell Rep. 2019 Feb 19;26(8):2088-2100.e4. doi: 10.1016/j.celrep.2019.01.102.
6
Molecular Basis of Aquaporin-7 Permeability Regulation by pH.
Cells. 2018 Nov 10;7(11):207. doi: 10.3390/cells7110207.
7
Mechanical characterization of disordered and anisotropic cellular monolayers.
Phys Rev E. 2018 May;97(5-1):052409. doi: 10.1103/PhysRevE.97.052409.
8
Transgenic Xenopus laevis Line for In Vivo Labeling of Nephrons within the Kidney.
Genes (Basel). 2018 Apr 6;9(4):197. doi: 10.3390/genes9040197.
9
Xenopus as a model for studies in mechanical stress and cell division.
Genesis. 2017 Jan;55(1-2). doi: 10.1002/dvg.23004.
10
Rat Aquaporin-5 Is pH-Gated Induced by Phosphorylation and Is Implicated in Oxidative Stress.
Int J Mol Sci. 2016 Dec 13;17(12):2090. doi: 10.3390/ijms17122090.

本文引用的文献

1
Experimental control of excitable embryonic tissues: three stimuli induce rapid epithelial contraction.
Exp Cell Res. 2010 Jan 1;316(1):103-14. doi: 10.1016/j.yexcr.2009.08.005. Epub 2009 Aug 15.
2
Microinjection of Xenopus laevis oocytes.
J Vis Exp. 2009 Feb 23(24):1106. doi: 10.3791/1106.
3
Obtaining eggs from Xenopus laevis females.
J Vis Exp. 2008 Aug 20(18):890. doi: 10.3791/890.
5
Embryonic wound healing by apical contraction and ingression in Xenopus laevis.
Cell Motil Cytoskeleton. 2002 Nov;53(3):163-76. doi: 10.1002/cm.10070.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验