Yang Jing, Hearty Emily, Wang Yingli, Vijayraghavan Deepthi S, Walter Timothy, Anjum Sommer, Stuckenholz Carsten, Cheng Ya-Wen, Balasubramanian Sahana, Dong Yicheng, Kwiatkowski Adam V, Davidson Lance A
Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
Small Methods. 2025 Mar 9:e2500136. doi: 10.1002/smtd.202500136.
Mechanical strain substantially influences tissue shape and function in various contexts from embryonic development to disease progression. Disruptions in these processes can result in congenital abnormalities and short-circuit mechanotransduction pathways. Manipulating strain in live tissues is crucial for understanding its impact on cellular and subcellular activities, unraveling the interplay between mechanics and cells. Existing tools, such as optogenetic modulation of strain, are limited to small strains over limited distances and durations. Here, a high-strain stretcher system, the TissueTractor, is introduced to enable simultaneous high-resolution spatiotemporal imaging of live cells and tissues under strain applications varying from 0% to over 100%. We use the system with organotypic explants from Xenopus laevis embryos, where applied tension reveals cellular strain heterogeneity and remodeling of intracellular keratin filaments. To highlight the device's adaptability, the TissueTractor is also used to study two other mechanically sensitive cell types with distinct physiological roles: human umbilical vein endothelial cells and mouse neonatal cardiomyocytes, revealing cell morphological changes under significant strain. The results underscore the potential of the TissueTractor for investigating mechanical cues that regulate tissue dynamics and morphogenesis.
在从胚胎发育到疾病进展的各种情况下,机械应变会对组织的形状和功能产生重大影响。这些过程中的干扰可能导致先天性异常,并使机械转导途径短路。在活组织中操纵应变对于理解其对细胞和亚细胞活动的影响、揭示力学与细胞之间的相互作用至关重要。现有的工具,如应变的光遗传学调制,仅限于在有限的距离和持续时间内施加小应变。在此,我们介绍一种高应变拉伸系统——组织牵引器(TissueTractor),它能够在0%至超过100%的应变应用下,对活细胞和组织进行同步的高分辨率时空成像。我们将该系统用于非洲爪蟾胚胎的器官型外植体,施加的张力揭示了细胞应变的异质性以及细胞内角蛋白丝的重塑。为了突出该设备的适应性,组织牵引器还用于研究另外两种具有不同生理作用的机械敏感细胞类型:人脐静脉内皮细胞和小鼠新生心肌细胞,揭示了在显著应变下的细胞形态变化。这些结果强调了组织牵引器在研究调节组织动态和形态发生的机械信号方面的潜力。