Suppr超能文献

有丝分裂纺锤体动力学模型中的弛豫和噪声驱动的振荡。

Relaxation and Noise-Driven Oscillations in a Model of Mitotic Spindle Dynamics.

机构信息

Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.

Department of Mathematics, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.

出版信息

Bull Math Biol. 2024 Aug 3;86(9):113. doi: 10.1007/s11538-024-01341-w.

Abstract

During cell division, the mitotic spindle moves dynamically through the cell to position the chromosomes and determine the ultimate spatial position of the two daughter cells. These movements have been attributed to the action of cortical force generators which pull on the astral microtubules to position the spindle, as well as pushing events by these same microtubules against the cell cortex and plasma membrane. Attachment and detachment of cortical force generators working antagonistically against centring forces of microtubules have been modelled previously (Grill et al. in Phys Rev Lett 94:108104, 2005) via stochastic simulations and mean-field Fokker-Planck equations (describing random motion of force generators) to predict oscillations of a spindle pole in one spatial dimension. Using systematic asymptotic methods, we reduce the Fokker-Planck system to a set of ordinary differential equations (ODEs), consistent with a set proposed by Grill et al., which can provide accurate predictions of the conditions for the Fokker-Planck system to exhibit oscillations. In the limit of small restoring forces, we derive an algebraic prediction of the amplitude of spindle-pole oscillations and demonstrate the relaxation structure of nonlinear oscillations. We also show how noise-induced oscillations can arise in stochastic simulations for conditions in which the mean-field Fokker-Planck system predicts stability, but for which the period can be estimated directly by the ODE model and the amplitude by a related stochastic differential equation that incorporates random binding kinetics.

摘要

在细胞分裂过程中,有丝分裂纺锤体通过细胞动态移动,定位染色体并确定两个子细胞的最终空间位置。这些运动归因于皮质力发生器的作用,皮质力发生器拉动星状微管来定位纺锤体,同时微管也对细胞皮质和质膜施加推动事件。以前已经通过随机模拟和描述力发生器随机运动的平均场福克-普朗克方程(描述力发生器的随机运动)对拮抗作用于微管中心力的皮质力发生器的附着和脱离进行了建模(Grill 等人,在 Phys Rev Lett 94:108104, 2005),以预测一个空间维度中纺锤体极的振荡。使用系统渐近方法,我们将福克-普朗克系统简化为一组常微分方程(ODE),与 Grill 等人提出的一组 ODE 一致,这些 ODE 可以为福克-普朗克系统表现出振荡的条件提供准确的预测。在小恢复力的极限下,我们推导出了纺锤体极振荡幅度的代数预测,并展示了非线性振荡的弛豫结构。我们还展示了在平均场福克-普朗克系统预测稳定的条件下,随机模拟中如何出现噪声诱导的振荡,但对于这些条件,可以直接通过 ODE 模型估计周期,通过包含随机结合动力学的相关随机微分方程估计幅度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b27/11297845/3e0443d79f28/11538_2024_1341_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验