Department of Agricultural and Biological Engineering, University of Illinois at Urbana Champaign, 1304 W, Pennsylvania Ave, Urbana, IL 61801 USA.
J Biol Eng. 2010 May 25;4:6. doi: 10.1186/1754-1611-4-6.
Membrane proteins are an important class of proteins, playing a key role in many biological processes, and are a promising target in pharmaceutical development. However, membrane proteins are often difficult to produce in large quantities for the purpose of crystallographic or biochemical analyses.
In this paper, we demonstrate that synthetic gene circuits designed specifically to overexpress certain genes can be applied to manipulate the expression kinetics of a model membrane protein, cytochrome bd quinol oxidase in E. coli, resulting in increased expression rates. The synthetic circuit involved is an engineered, autoinducer-independent variant of the lux operon activator LuxR from V. fischeri in an autoregulatory, positive feedback configuration.
Our proof-of-concept experiments indicate a statistically significant increase in the rate of production of the bd oxidase membrane protein. Synthetic gene networks provide a feasible solution for the problem of membrane protein production.
膜蛋白是一类重要的蛋白质,在许多生物过程中发挥着关键作用,是药物开发有前途的靶点。然而,膜蛋白通常难以大量生产,以进行晶体学或生化分析。
本文证明,专门设计用于过表达某些基因的合成基因电路可用于操纵模型膜蛋白细胞色素 bd 醌氧化酶在大肠杆菌中的表达动力学,从而提高表达率。所涉及的合成电路是一种工程化的、不依赖于自动诱导物的发光杆菌 lux 操纵子激活因子 LuxR 的变体,以自调控的正反馈构型存在。
我们的概念验证实验表明,bd 氧化酶膜蛋白的产生速度有了统计学上的显著提高。合成基因网络为膜蛋白生产问题提供了一种可行的解决方案。