Suppr超能文献

分析策略用于检测纳米颗粒-蛋白质相互作用。

Analytical strategies for detecting nanoparticle-protein interactions.

机构信息

School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.

出版信息

Analyst. 2010 Jul;135(7):1519-30. doi: 10.1039/c0an00075b. Epub 2010 May 26.

Abstract

A significant increase in biomedical applications of nanomaterials and their potential toxicity demands versatile analytical techniques to determine protein-nanoparticle (NP) interactions. These diverse analytical techniques are reviewed. Spectroscopic methods play a significant role in studying binding affinity, binding ratio, and binding mechanisms. To elucidate NP-proteome interactions, chromatography and electrophoresis techniques are applied to separate NP-bound proteins and matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) to identify these proteins. Since NP-protein binding is a dynamic event, surface plasmon resonance (SPR) and quartz crystal microbalance (QCM) are methods of choice to study the kinetics of NP-protein binding.

摘要

纳米材料在生物医学中的应用显著增加,其潜在毒性也要求有多种分析技术来确定蛋白质-纳米颗粒(NP)的相互作用。本文综述了这些不同的分析技术。光谱方法在研究结合亲和力、结合比和结合机制方面发挥着重要作用。为了阐明 NP-蛋白质组相互作用,应用色谱和电泳技术分离 NP 结合的蛋白质,基质辅助激光解吸电离飞行时间质谱(MALDI-TOF-MS)用于鉴定这些蛋白质。由于 NP-蛋白质的结合是一个动态过程,因此表面等离子体共振(SPR)和石英晶体微天平(QCM)是研究 NP-蛋白质结合动力学的首选方法。

相似文献

1
Analytical strategies for detecting nanoparticle-protein interactions.
Analyst. 2010 Jul;135(7):1519-30. doi: 10.1039/c0an00075b. Epub 2010 May 26.
2
Advances in surface plasmon resonance biomolecular interaction analysis mass spectrometry (BIA/MS).
J Mol Recognit. 1999 Mar-Apr;12(2):77-93. doi: 10.1002/(SICI)1099-1352(199903/04)12:2<77::AID-JMR448>3.0.CO;2-G.
3
Profiling of nanoparticle-protein interactions by electrophoresis techniques.
Anal Bioanal Chem. 2019 Jan;411(1):79-96. doi: 10.1007/s00216-018-1401-3. Epub 2018 Oct 13.
4
Surface plasmon resonance mass spectrometry for protein analysis.
Methods Mol Biol. 2006;328:131-9. doi: 10.1385/1-59745-026-X:131.
9
Surface plasmon resonance/mass spectrometry interface.
Anal Chem. 2005 Feb 15;77(4):1157-62. doi: 10.1021/ac049033d.
10
Surface plasmon resonance mass spectrometry: recent progress and outlooks.
Trends Biotechnol. 2003 Jul;21(7):301-5. doi: 10.1016/S0167-7799(03)00141-0.

引用本文的文献

4
Designing Functional Bionanoconstructs for Effective Targeting.
Bioconjug Chem. 2022 Mar 16;33(3):429-443. doi: 10.1021/acs.bioconjchem.1c00546. Epub 2022 Feb 15.
5
Physico-chemical characterization of kajjali, black sulphide of mercury, with respect to the role of sulfur in its formation and structure.
J Ayurveda Integr Med. 2021 Oct-Dec;12(4):590-600. doi: 10.1016/j.jaim.2021.05.006. Epub 2021 Nov 10.
6
Biomolecular interactions of ultrasmall metallic nanoparticles and nanoclusters.
Nanoscale Adv. 2021 Apr 28;3(11):2995-3027. doi: 10.1039/d1na00086a.
8
Prediction of protein corona on nanomaterials by machine learning using novel descriptors.
NanoImpact. 2020 Jan;17. doi: 10.1016/j.impact.2020.100207. Epub 2020 Jan 16.
9
Applications of Nanomaterials in Leishmaniasis: A Focus on Recent Advances and Challenges.
Nanomaterials (Basel). 2019 Dec 9;9(12):1749. doi: 10.3390/nano9121749.
10
Autonomous Synthesis of Fluorescent Silica Biodots Using Engineered Fusion Proteins.
ACS Omega. 2018 Jan 31;3(1):585-594. doi: 10.1021/acsomega.7b01769. Epub 2018 Jan 18.

本文引用的文献

1
Interaction of gold nanoparticles with common human blood proteins.
ACS Nano. 2010 Jan 26;4(1):365-79. doi: 10.1021/nn9011187.
2
Design of one-to-one recognition triple Au nanoparticles DNA probe and its application in the electrochemical DNA biosensor.
Chem Commun (Camb). 2009 Dec 7(45):6958-60. doi: 10.1039/b913922b. Epub 2009 Oct 16.
3
Formulation of novel lipid-coated magnetic nanoparticles as the probe for in vivo imaging.
J Biomed Sci. 2009 Sep 21;16(1):86. doi: 10.1186/1423-0127-16-86.
5
Gold nanoparticles with a monolayer of doxorubicin-conjugated amphiphilic block copolymer for tumor-targeted drug delivery.
Biomaterials. 2009 Oct;30(30):6065-75. doi: 10.1016/j.biomaterials.2009.07.048. Epub 2009 Aug 12.
6
Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy.
Adv Drug Deliv Rev. 2009 Jun 21;61(6):428-37. doi: 10.1016/j.addr.2009.03.009. Epub 2009 Apr 17.
7
Optical investigation of the electron transfer protein azurin-gold nanoparticle system.
Biophys Chem. 2009 Jan;139(1):1-7. doi: 10.1016/j.bpc.2008.09.016. Epub 2008 Sep 30.
8
Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts.
Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14265-70. doi: 10.1073/pnas.0805135105. Epub 2008 Sep 22.
9
Synthetic "chaperones": nanoparticle-mediated refolding of thermally denatured proteins.
Chem Commun (Camb). 2008 Aug 14(30):3504-6. doi: 10.1039/b805242e. Epub 2008 May 23.
10
A pilot toxicology study of single-walled carbon nanotubes in a small sample of mice.
Nat Nanotechnol. 2008 Apr;3(4):216-21. doi: 10.1038/nnano.2008.68. Epub 2008 Mar 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验