文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

金纳米颗粒生物共轭物在应用介质中的稳定性和包被效率的多环境多参数筛选

Multi-environment and multi-parameter screening of stability and coating efficiency of gold nanoparticle bioconjugates in application media.

作者信息

Wang Junjie, Giordani Stefano, Marassi Valentina, Placci Anna, Roda Barbara, Reschiglian Pierluigi, Zattoni Andrea

机构信息

Department of Chemistry G. Ciamician, University of Bologna, Bologna, 40126, Italy.

byFlow srl, Bologna, 40129, Italy.

出版信息

Sci Rep. 2024 Dec 30;14(1):31568. doi: 10.1038/s41598-024-73624-0.


DOI:10.1038/s41598-024-73624-0
PMID:39738087
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11686277/
Abstract

Gold nanoparticles (AuNPs) and their biocompatible conjugates find wide use as transducers in (bio)sensors and as Nano-pharmaceutics. The study of the interaction between AuNPs and proteins in representative application media helps to better understand their intrinsic behaviors. A multi-environment, multi-parameter screening strategy is proposed based on asymmetric flow field flow fractionation (AF4)-multidetector. Citrate-coated AuNPs ( AuCIT, 25.1 ± 0.2 nm) and PEG-coated AuNPs (AuPEG, 38.3 ± 0.8 nm) were employed with albumin as a model system. Attention was put in investigating the influence of Au/BSA mass ratios, that allowed to identify the yield-maximizing (1:1) and product-maximizing (2.5:1) conditions for the generation of AuNPs-protein conjugates. Furthermore, bioconjugate properties were thoroughly assessed across various saline media with different pH and ionic strengths. While AuNPs with PEG coating exhibit greater stability at high salinities, such as 30 mM, their conjugates are less stable over time. In contrast, although bare AuNPs are significantly affected by pH and salt concentration, once conjugates are formed, their stability surpasses that of the conjugates formed with AuPEG. The developed methodology can fill the vacancy of standard reference quality control (QC) procedures for bioconjugate synthesis and application in (bio)sensors and Nano-pharmaceutics, screening in a short time many combinations, easily scaling up to the semi-preparative scale or translating to different bioconjugates.

摘要

金纳米颗粒(AuNPs)及其生物相容性缀合物在(生物)传感器中作为换能器以及作为纳米药物有着广泛应用。研究AuNPs与代表性应用介质中蛋白质之间的相互作用有助于更好地理解它们的内在行为。基于不对称流场流分馏(AF4)-多检测器提出了一种多环境、多参数筛选策略。以柠檬酸盐包覆的AuNPs(AuCIT,25.1±0.2纳米)和聚乙二醇包覆的AuNPs(AuPEG,38.3±0.8纳米)与白蛋白作为模型系统。重点研究了Au/牛血清白蛋白质量比的影响,从而确定生成AuNPs-蛋白质缀合物的产量最大化(1:1)和产物最大化(2.5:1)条件。此外,还在不同pH值和离子强度的各种盐溶液介质中对生物缀合物的性质进行了全面评估。虽然聚乙二醇包覆的AuNPs在高盐浓度(如30 mM)下表现出更高的稳定性,但其缀合物随时间的稳定性较差。相比之下,尽管裸AuNPs受pH值和盐浓度的影响显著,但一旦形成缀合物,其稳定性超过了用AuPEG形成的缀合物。所开发的方法可以填补生物缀合物合成以及在(生物)传感器和纳米药物应用中的标准参考质量控制(QC)程序的空白,能在短时间内筛选多种组合,易于扩大到半制备规模或转化用于不同的生物缀合物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f15b/11686277/c891a552372d/41598_2024_73624_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f15b/11686277/e813fdfd8d34/41598_2024_73624_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f15b/11686277/2791657e0b32/41598_2024_73624_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f15b/11686277/c532baf0e17a/41598_2024_73624_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f15b/11686277/b223c08f57ba/41598_2024_73624_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f15b/11686277/af359504fb49/41598_2024_73624_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f15b/11686277/c891a552372d/41598_2024_73624_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f15b/11686277/e813fdfd8d34/41598_2024_73624_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f15b/11686277/2791657e0b32/41598_2024_73624_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f15b/11686277/c532baf0e17a/41598_2024_73624_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f15b/11686277/b223c08f57ba/41598_2024_73624_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f15b/11686277/af359504fb49/41598_2024_73624_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f15b/11686277/c891a552372d/41598_2024_73624_Fig6_HTML.jpg

相似文献

[1]
Multi-environment and multi-parameter screening of stability and coating efficiency of gold nanoparticle bioconjugates in application media.

Sci Rep. 2024-12-30

[2]
Analytical strategy based on asymmetric flow field flow fractionation hyphenated to ICP-MS and complementary techniques to study gold nanoparticles transformations in cell culture medium.

Anal Chim Acta. 2018-12-5

[3]
AF4-UV/VIS-MALS-ICPMS/MS for the characterization of the different nanoparticulated species present in oligonucleotide-gold nanoparticle conjugates.

Talanta. 2023-5-1

[4]
Orthogonal analysis of functional gold nanoparticles for biomedical applications.

Anal Bioanal Chem. 2015-11

[5]
Adsorption and conformation of serum albumin protein on gold nanoparticles investigated using dimensional measurements and in situ spectroscopic methods.

Langmuir. 2011-2-22

[6]
Complex analysis of concentrated antibody-gold nanoparticle conjugates' mixtures using asymmetric flow field-flow fractionation.

J Chromatogr A. 2016-12-16

[7]
Zeta-potential data reliability of gold nanoparticle biomolecular conjugates and its application in sensitive quantification of surface absorbed protein.

Colloids Surf B Biointerfaces. 2016-12-1

[8]
Gold nanoparticles stabilize peptide-drug-conjugates for sustained targeted drug delivery to cancer cells.

J Nanobiotechnology. 2018-3-30

[9]
Analyzing the influence of PEG molecular weight on the separation of PEGylated gold nanoparticles by asymmetric-flow field-flow fractionation.

Anal Bioanal Chem. 2015-11

[10]
Stabilizing gold nanoparticle bioconjugates in physiological conditions by PEGylation.

Methods Mol Biol. 2013

本文引用的文献

[1]
A gold nanoparticle-protein G electrochemical affinity biosensor for the detection of SARS-CoV-2 antibodies: a surface modification approach.

Sci Rep. 2022-7-27

[2]
Synthesis Monitoring, Characterization and Cleanup of Ag-Polydopamine Nanoparticles Used as Antibacterial Agents with Field-Flow Fractionation.

Antibiotics (Basel). 2022-3-8

[3]
FFF-based high-throughput sequence shortlisting to support the development of aptamer-based analytical strategies.

Anal Bioanal Chem. 2022-7

[4]
Field-flow fractionation for molecular-interaction studies of labile and complex systems: A critical review.

Anal Chim Acta. 2022-2-8

[5]
Nanoparticles in nanomedicine: a comprehensive updated review on current status, challenges and emerging opportunities.

J Microencapsul. 2021-9

[6]
Aptamer-Target-Gold Nanoparticle Conjugates for the Quantification of Fumonisin B1.

Biosensors (Basel). 2021-1-8

[7]
Perspectives on protein biopolymers: miniaturized flow field-flow fractionation-assisted characterization of a single-cysteine mutated phaseolin expressed in transplastomic tobacco plants.

J Chromatogr A. 2021-1-25

[8]
Asymmetric flow field-flow fractionation coupled to surface plasmon resonance detection for analysis of therapeutic proteins in blood serum.

Anal Bioanal Chem. 2021-1

[9]
Delivering the power of nanomedicine to patients today.

J Control Release. 2020-7-15

[10]
The Density of Surface Coating Can Contribute to Different Antibacterial Activities of Gold Nanoparticles.

Nano Lett. 2020-6-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索