Bone and Joint Research Group, Centre for Human Development, Stem Cells, and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, United Kingdom.
Tissue Eng Part A. 2010 Oct;16(10):3241-50. doi: 10.1089/ten.TEA.2009.0638.
Targeting and differentiating stem cells at sites of injury and repair is an exciting and promising area for disease treatment and reparative medicine. We have investigated remote magnetic field activation of magnetic nanoparticle-tagged mechanosensitive receptors on the cell membrane of human bone marrow stromal cells (HBMSCs) for use in osteoprogenitor cell delivery systems and activation of differentiation in vitro and in vivo toward an osteochondral lineage. HBMSC-labeled with magnetic beads coated with antibodies or peptides to the transmembrane ion channel stretch activated potassium channel (TREK-1) or arginine–glycine–aspartic acid were cultured in monolayer or encapsulated into polysaccharide alginate/chitosan microcapsules. Upregulation in gene expression was measured in magnetic particle-labeled HBMSCs in response to TREK-1 activation over a short period (7 days) with an increase in mRNA levels of Sox9, core binding factor alpha1 (Cbfa1), and osteopontin. Magnetic particle-labeled HBMSCs encapsulated into alginate chitosan capsules were exposed to magnetic forces both in vitro and in vivo intermittently for 21 days. After 21 days the encapsulated, magnetic particle-labeled HBMSCs in vivo were viable as evidenced by extensive cell tracker green fluorescence. The mechanical stimulation of HBMSCs labeled with TREK-1 magnetic nanoparticle receptors enhanced expression of type-1 collagen in vitro with increases in proteoglycan matrix, core binding factor alpha1 (Cbfa1) and collagen synthesis, and extracellular matrix production and elevated the expression of type-1 and type-2 collagen in vivo. Additionally, the magnetically remote stimulation of HBMSCs labeled with magnetic nanoparticle arginine–glycine–aspartic acid considerably enhanced proteoglycan and collagen synthesis and extracellular matrix production and elevated the expression of type-1 and type-2 collagen in vivo and in vitro. Osteogenic mechanosensitive receptor manipulation by magnetic nanotechnology can induce the differentiation of osteoprogenitor cell populations toward an osteogenic lineage. These cell manipulation strategies offer tremendous therapeutic opportunities in soft and hard tissue repair.
靶向和区分损伤和修复部位的干细胞是疾病治疗和修复医学领域令人兴奋和有前途的领域。我们研究了远程磁场对人骨髓基质细胞(HBMSC)细胞膜上的磁性纳米颗粒标记的机械敏感受体的激活作用,用于成骨前体细胞输送系统,并在体外和体内激活向骨软骨谱系的分化。用涂有针对跨膜离子通道伸展激活钾通道(TREK-1)或精氨酸-甘氨酸-天冬氨酸的抗体或肽的磁珠标记 HBMSC,在单层或包封入多糖藻酸盐/壳聚糖微胶囊中进行培养。在短时间(7 天)内,通过 TREK-1 激活测量磁颗粒标记的 HBMSC 中的基因表达上调,Sox9、核心结合因子 alpha1(Cbfa1)和骨桥蛋白的 mRNA 水平增加。将包封在藻酸盐-壳聚糖胶囊中的磁颗粒标记的 HBMSC 进行体外和体内间歇性暴露于磁场 21 天。21 天后,体内包封的、磁颗粒标记的 HBMSC 是存活的,因为细胞追踪绿色荧光的广泛存在而得到证明。用 TREK-1 磁性纳米颗粒受体标记的 HBMSC 的机械刺激增强了体外 1 型胶原的表达,增加了蛋白聚糖基质、核心结合因子 alpha1(Cbfa1)和胶原合成以及细胞外基质的产生,并提高了体内 1 型和 2 型胶原的表达。此外,用磁性纳米颗粒精氨酸-甘氨酸-天冬氨酸标记的 HBMSC 的磁远程刺激大大增强了蛋白聚糖和胶原合成以及细胞外基质的产生,并提高了体内和体外 1 型和 2 型胶原的表达。通过磁纳米技术对成骨机械敏感受体的操纵可以诱导成骨前体细胞向成骨谱系分化。这些细胞操纵策略为软组织和硬组织修复提供了巨大的治疗机会。