文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Microfabrication Technologies for Nanoinvasive and High-Resolution Magnetic Neuromodulation.

作者信息

Ge Changhao, Masalehdan Tahereh, Shojaei Baghini Mahdieh, Duran Toro Vicente, Signorelli Lorenzo, Thomson Hannah, Gregurec Danijela, Heidari Hadi

机构信息

Microelectronics Lab (meLAB), James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK.

Biointerfaces lab, Faculty of Sciences, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 91, 91052, Erlangen, Germany.

出版信息

Adv Sci (Weinh). 2024 Dec;11(46):e2404254. doi: 10.1002/advs.202404254. Epub 2024 Oct 24.


DOI:10.1002/advs.202404254
PMID:39445520
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11633526/
Abstract

The increasing demand for precise neuromodulation necessitates advancements in techniques to achieve higher spatial resolution. Magnetic stimulation, offering low signal attenuation and minimal tissue damage, plays a significant role in neuromodulation. Conventional transcranial magnetic stimulation (TMS), though noninvasive, lacks the spatial resolution and neuron selectivity required for spatially precise neuromodulation. To address these limitations, the next generation of magnetic neurostimulation technologies aims to achieve submillimeter-resolution and selective neuromodulation with high temporal resolution. Invasive and nanoinvasive magnetic neurostimulation are two next-generation approaches: invasive methods use implantable microcoils, while nanoinvasive methods use magnetic nanoparticles (MNPs) to achieve high spatial and temporal resolution of magnetic neuromodulation. This review will introduce the working principles, technical details, coil designs, and potential future developments of these approaches from an engineering perspective. Furthermore, the review will discuss state-of-the-art microfabrication in depth due to its irreplaceable role in realizing next-generation magnetic neuromodulation. In addition to reviewing magnetic neuromodulation, this review will cover through-silicon vias (TSV), surface micromachining, photolithography, direct writing, and other fabrication technologies, supported by case studies, providing a framework for the integration of magnetic neuromodulation and microelectronics technologies.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ef8/11633526/316bf7efb27d/ADVS-11-2404254-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ef8/11633526/2065114ac7db/ADVS-11-2404254-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ef8/11633526/b2fe30e4ea5f/ADVS-11-2404254-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ef8/11633526/c78621fe63bb/ADVS-11-2404254-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ef8/11633526/61283a1891f8/ADVS-11-2404254-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ef8/11633526/f71e6c1fb23d/ADVS-11-2404254-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ef8/11633526/61d83e180aec/ADVS-11-2404254-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ef8/11633526/19e808a9f7de/ADVS-11-2404254-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ef8/11633526/316bf7efb27d/ADVS-11-2404254-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ef8/11633526/2065114ac7db/ADVS-11-2404254-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ef8/11633526/b2fe30e4ea5f/ADVS-11-2404254-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ef8/11633526/c78621fe63bb/ADVS-11-2404254-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ef8/11633526/61283a1891f8/ADVS-11-2404254-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ef8/11633526/f71e6c1fb23d/ADVS-11-2404254-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ef8/11633526/61d83e180aec/ADVS-11-2404254-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ef8/11633526/19e808a9f7de/ADVS-11-2404254-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ef8/11633526/316bf7efb27d/ADVS-11-2404254-g008.jpg

相似文献

[1]
Microfabrication Technologies for Nanoinvasive and High-Resolution Magnetic Neuromodulation.

Adv Sci (Weinh). 2024-12

[2]
Effect of Neurostimulation on Chronic Pancreatic Pain: A Systematic Review.

Neuromodulation. 2024-12

[3]
Design of TI-TMS system for deep brain stimulation with higher focus in neural modulation.

Sci Rep. 2025-7-1

[4]
Non-invasive and invasive brain stimulation in alcohol use disorders: A critical review of selected human evidence and methodological considerations to guide future research.

Compr Psychiatry. 2021-8

[5]
Noninvasive Electromagnetic Neuromodulation of the Central and Peripheral Nervous System for Upper-Limb Motor Strength and Functionality in Individuals with Cervical Spinal Cord Injury: A Systematic Review and Meta-Analysis.

Sensors (Basel). 2024-7-19

[6]
Invasive and Non-Invasive Neuromodulation for the Treatment of Substance Use Disorders: A Review of Reviews.

Brain Sci. 2025-7-6

[7]
Transcranial magnetic stimulation (TMS) for schizophrenia.

Cochrane Database Syst Rev. 2015-8-20

[8]
Noninvasive neuromodulation for disorders of consciousness: an updated systematic review and meta-analysis.

Crit Care. 2025-7-3

[9]
Neuromodulation in Chronic Migraine: Evidence and Recommendations from the GRADE Framework.

Adv Ther. 2025-5-8

[10]
Longitudinal EEG-based assessment of neuroplasticity and adaptive responses to transcranial focused ultrasound stimulation.

J Neurosci Methods. 2025-10

引用本文的文献

[1]
Genetics-Based Targeting Strategies for Precise Neuromodulation.

Adv Sci (Weinh). 2025-7

[2]
Advances in magnetic field approaches for non-invasive targeting neuromodulation.

Front Hum Neurosci. 2025-4-28

[3]
Micro-Coil Neuromodulation at Single-Cell and Circuit Levels for Inhibiting Natural Neuroactivity, Neutralizing Electric Neural Excitation, and Suppressing Seizures.

Adv Sci (Weinh). 2025-6

[4]
Restore axonal conductance in a locally demyelinated axon with electromagnetic stimulation.

J Neural Eng. 2025-2-14

本文引用的文献

[1]
Efficacy of 3D printed anatomically equivalent thermoplastic polyurethane guide conduits in promoting the regeneration of critical-sized peripheral nerve defects.

Biofabrication. 2024-7-25

[2]
Design of a 1 × 4 micro-magnetic stimulation device and its targeted, coordinated regulation on LTP of Schaffer-CA1 in the hippocampus of rats.

Methods. 2024-9

[3]
Neurophotonics: a comprehensive review, current challenges and future trends.

Front Neurosci. 2024-5-3

[4]
Advances in lithographic techniques for precision nanostructure fabrication in biomedical applications.

Discov Nano. 2023-12-11

[5]
The effect of pulse shape in theta-burst stimulation: Monophasic vs biphasic TMS.

Brain Stimul. 2023

[6]
Controlled synthesis of multifunctional dome-shaped micro- and nano-structures a robust physical route for biological applications.

J Mater Chem B. 2023-8-2

[7]
Magnetothermal-based non-invasive focused magnetic stimulation for functional recovery in chronic stroke treatment.

Sci Rep. 2023-3-27

[8]
Improving focality and consistency in micromagnetic stimulation.

Front Comput Neurosci. 2023-2-2

[9]
MEMS micro-coils for magnetic neurostimulation.

Biosens Bioelectron. 2023-5-1

[10]
Literature Review of the Efficacy of Repetitive Transcranial Magnetic Stimulation on Epilepsy.

Iran J Child Neurol. 2023

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索