Institute of Future Biophysics, Dolgoprudny, 141701, Russia.
Moscow Center for Advanced Studies, Moscow, 123592, Russia.
J Nanobiotechnology. 2024 Jun 10;22(1):327. doi: 10.1186/s12951-024-02616-z.
Magnetogenetics emerges as a transformative approach for modulating cellular signaling pathways through the strategic application of magnetic fields and nanoparticles. This technique leverages the unique properties of magnetic nanoparticles (MNPs) to induce mechanical or thermal stimuli within cells, facilitating the activation of mechano- and thermosensitive proteins without the need for traditional ligand-receptor interactions. Unlike traditional modalities that often require invasive interventions and lack precision in targeting specific cellular functions, magnetogenetics offers a non-invasive alternative with the capacity for deep tissue penetration and the potential for targeting a broad spectrum of cellular processes. This review underscores magnetogenetics' broad applicability, from steering stem cell differentiation to manipulating neuronal activity and immune responses, highlighting its potential in regenerative medicine, neuroscience, and cancer therapy. Furthermore, the review explores the challenges and future directions of magnetogenetics, including the development of genetically programmed magnetic nanoparticles and the integration of magnetic field-sensitive cells for in vivo applications. Magnetogenetics stands at the forefront of cellular manipulation technologies, offering novel insights into cellular signaling and opening new avenues for therapeutic interventions.
磁遗传学作为一种变革性的方法,通过磁场和纳米粒子的策略应用来调节细胞信号通路。该技术利用磁性纳米粒子 (MNP) 的独特性质在细胞内诱导机械或热刺激,促进机械敏感和热敏蛋白的激活,而无需传统的配体-受体相互作用。与传统的模式不同,传统模式通常需要侵入性干预,并且在靶向特定细胞功能方面缺乏精度,磁遗传学提供了一种非侵入性的替代方法,具有穿透深层组织的能力和靶向广泛细胞过程的潜力。本综述强调了磁遗传学的广泛适用性,从引导干细胞分化到操纵神经元活动和免疫反应,突出了其在再生医学、神经科学和癌症治疗中的潜力。此外,该综述还探讨了磁遗传学的挑战和未来方向,包括遗传编程的磁性纳米粒子的开发和用于体内应用的磁场敏感细胞的整合。磁遗传学处于细胞操作技术的前沿,为细胞信号提供了新的见解,并为治疗干预开辟了新的途径。