Foundation for Applied Molecular Evolution and The Westheimer Institute for Science and Technology, Gainesville, Florida 32601, USA.
Cold Spring Harb Perspect Biol. 2010 Jul;2(7):a003467. doi: 10.1101/cshperspect.a003467. Epub 2010 May 26.
Organic chemistry on a planetary scale is likely to have transformed carbon dioxide and reduced carbon species delivered to an accreting Earth. According to various models for the origin of life on Earth, biological molecules that jump-started Darwinian evolution arose via this planetary chemistry. The grandest of these models assumes that ribonucleic acid (RNA) arose prebiotically, together with components for compartments that held it and a primitive metabolism that nourished it. Unfortunately, it has been challenging to identify possible prebiotic chemistry that might have created RNA. Organic molecules, given energy, have a well-known propensity to form multiple products, sometimes referred to collectively as "tar" or "tholin." These mixtures appear to be unsuited to support Darwinian processes, and certainly have never been observed to spontaneously yield a homochiral genetic polymer. To date, proposed solutions to this challenge either involve too much direct human intervention to satisfy many in the community, or generate molecules that are unreactive "dead ends" under standard conditions of temperature and pressure. Carbohydrates, organic species having carbon, hydrogen, and oxygen atoms in a ratio of 1:2:1 and an aldehyde or ketone group, conspicuously embody this challenge. They are components of RNA and their reactivity can support both interesting spontaneous chemistry as part of a "carbohydrate world," but they also easily form mixtures, polymers and tars. We describe here the latest thoughts on how on this challenge, focusing on how it might be resolved using minerals containing borate, silicate, and molybdate, inter alia.
在行星尺度上的有机化学可能已经将二氧化碳和输送到吸积地球上的还原碳物种转化。根据地球上生命起源的各种模型,启动达尔文进化的生物分子是通过这种行星化学产生的。其中最宏大的模型假设核糖核酸 (RNA) 是在地球形成之前,与容纳它的隔间的组成部分以及滋养它的原始新陈代谢一起产生的。不幸的是,确定可能创造 RNA 的前生物化学物质一直具有挑战性。给予能量的有机分子具有众所周知的形成多种产物的倾向,有时被统称为“焦油”或“tholin”。这些混合物似乎不适合支持达尔文过程,而且肯定从未观察到它们自发产生手性遗传聚合物。迄今为止,针对这一挑战的解决方案要么涉及太多直接的人为干预,无法满足社区中的许多人,要么生成在标准温度和压力条件下不反应的“死胡同”分子。碳水化合物是具有碳、氢和氧原子比例为 1:2:1 以及醛或酮基团的有机物种,明显体现了这一挑战。它们是 RNA 的组成部分,其反应性可以支持作为“碳水化合物世界”一部分的有趣自发化学反应,但它们也容易形成混合物、聚合物和焦油。我们在这里描述了如何应对这一挑战的最新思路,重点介绍了如何使用含硼酸盐、硅酸盐和钼酸盐等矿物来解决这一问题。