Suppr超能文献

早期缺血预处理的心脏保护机制。

Mechanism of cardioprotection by early ischemic preconditioning.

机构信息

Department of Physiology, College of Medicine, University of South Alabama, MSB 3074, Mobile, AL 36688, USA.

出版信息

Cardiovasc Drugs Ther. 2010 Jun;24(3):225-34. doi: 10.1007/s10557-010-6236-x.

Abstract

A series of brief ischemia/reperfusion cycles (termed ischemic preconditioning, IPC) limits myocardial injury produced by a subsequent prolonged period of coronary artery occlusion and reperfusion. Over the last 2 decades our understanding of IPC's mechanism has increased exponentially. Hearts exposed to IPC have a better metabolic and ionic status during prolonged ischemia compared to naïve hearts. However, this difference is not thought to be the main mechanism by which IPC protects against infarction. Signaling pathways that are activated by IPC distinguish IPC hearts from naïve hearts. During the trigger phase of IPC, adenosine, bradykinin and opioid receptors are occupied. Although these three receptors trigger signaling through divergent pathways, the signaling converges on protein kinase C. We have proposed that at the end of the index ischemia the activated PKC sensitizes the low-affinity A(2b) adenosine receptor (A(2b)AR) through phosphorylation of either the receptor or its coupling proteins so that A(2b)AR can be activated by endogenous adenosine released by the previously ischemic cardiomyocytes. The sensitized A(2b)AR would then be responsible for activation of the survival kinases including PI3 kinase, Akt and ERK which then act to inhibit lethal mitochondrial permeability transition pore formation which normally uncouples mitochondria and destroys many myocytes in the first minutes of reperfusion. Herein we review the evidence for the above mechanisms and their functional details.

摘要

一系列短暂的缺血/再灌注循环(称为缺血预处理,IPC)限制了随后长时间冠状动脉闭塞和再灌注引起的心肌损伤。在过去的 20 年中,我们对 IPC 机制的理解呈指数级增长。与未预处理的心脏相比,暴露于 IPC 的心脏在长时间缺血期间具有更好的代谢和离子状态。然而,这种差异被认为不是 IPC 保护心肌免受梗塞的主要机制。IPC 激活的信号通路将 IPC 心脏与未预处理的心脏区分开来。在 IPC 的触发阶段,腺苷、缓激肽和阿片受体被占据。尽管这三个受体通过不同的途径触发信号,但信号集中在蛋白激酶 C 上。我们提出,在指数缺血的末期,激活的 PKC 通过磷酸化受体或其偶联蛋白使低亲和力 A(2b)腺苷受体(A(2b)AR)敏化,以便 A(2b)AR 可以被先前缺血的心肌细胞释放的内源性腺苷激活。敏化的 A(2b)AR 随后将负责激活生存激酶,包括 PI3 激酶、Akt 和 ERK,这些激酶随后作用于抑制致命的线粒体通透性转换孔形成,该孔通常使线粒体解偶联并在再灌注的最初几分钟内破坏许多心肌细胞。本文综述了上述机制及其功能细节的证据。

相似文献

1
Mechanism of cardioprotection by early ischemic preconditioning.
Cardiovasc Drugs Ther. 2010 Jun;24(3):225-34. doi: 10.1007/s10557-010-6236-x.
3
Evidence that the acute phase of ischemic preconditioning does not require signaling by the A 2B adenosine receptor.
J Mol Cell Cardiol. 2010 Nov;49(5):886-93. doi: 10.1016/j.yjmcc.2010.08.015. Epub 2010 Aug 24.
4
Cardioprotective PKG-independent NO signaling at reperfusion.
Am J Physiol Heart Circ Physiol. 2010 Dec;299(6):H2028-36. doi: 10.1152/ajpheart.00527.2010. Epub 2010 Sep 17.
5
Redox signaling triggers protection during the reperfusion rather than the ischemic phase of preconditioning.
Basic Res Cardiol. 2008 Jul;103(4):378-84. doi: 10.1007/s00395-008-0718-z. Epub 2008 Mar 17.
7
The significance of the washout period in preconditioning.
Cardiovasc Ther. 2017 Jun;35(3). doi: 10.1111/1755-5922.12252.
8
lschemic preconditioning in pigs: a causal role for signal transducer and activator of transcription 3.
Am J Physiol Heart Circ Physiol. 2017 Mar 1;312(3):H478-H484. doi: 10.1152/ajpheart.00749.2016. Epub 2016 Dec 30.
9
Mapping preconditioning's signaling pathways: an engineering approach.
Ann N Y Acad Sci. 2008 Mar;1123:187-96. doi: 10.1196/annals.1420.022.
10
Signaling pathways in ischemic preconditioning.
Heart Fail Rev. 2007 Dec;12(3-4):181-8. doi: 10.1007/s10741-007-9025-2.

引用本文的文献

1
Pre-conditioning with PQQ during pregnancy alleviates LPS-induced placental damage and improves the fetal survival and growth in mice.
Front Endocrinol (Lausanne). 2025 Jul 10;16:1617026. doi: 10.3389/fendo.2025.1617026. eCollection 2025.
2
K channels and cardioprotection.
Arh Farm (Belgr). 2024;74(5):625-657. doi: 10.5937/arhfarm74-51604. Epub 2024 Nov 1.
3
Comparison of the preconditioning effect of different exercise training modalities on myocardial ischemia-reperfusion injury.
PLoS One. 2023 Dec 5;18(12):e0295169. doi: 10.1371/journal.pone.0295169. eCollection 2023.
4
Tefillin use induces preconditioning associated changes in heart rate variability.
PLoS One. 2023 Jan 18;18(1):e0280216. doi: 10.1371/journal.pone.0280216. eCollection 2023.
7
Programmed Exercise Attenuates Familial Hypertrophic Cardiomyopathy in Transgenic E22K Mice Inhibition of PKC-α/NFAT Pathway.
Front Cardiovasc Med. 2022 Feb 21;9:808163. doi: 10.3389/fcvm.2022.808163. eCollection 2022.
8
Role and Mechanism of PKC-δ for Cardiovascular Disease: Current Status and Perspective.
Front Cardiovasc Med. 2022 Feb 15;9:816369. doi: 10.3389/fcvm.2022.816369. eCollection 2022.
10
Role of Oxidative Stress in Reperfusion following Myocardial Ischemia and Its Treatments.
Oxid Med Cell Longev. 2021 May 18;2021:6614009. doi: 10.1155/2021/6614009. eCollection 2021.

本文引用的文献

1
Adenosine A2A and A2B receptors work in concert to induce a strong protection against reperfusion injury in rat hearts.
J Mol Cell Cardiol. 2009 Nov;47(5):684-90. doi: 10.1016/j.yjmcc.2009.08.009. Epub 2009 Aug 18.
2
Attenuation of infarction in cynomolgus monkeys: preconditioning and postconditioning.
Basic Res Cardiol. 2010 Jan;105(1):119-28. doi: 10.1007/s00395-009-0050-2. Epub 2009 Aug 8.
3
Cardioprotection of bradykinin at reperfusion involves transactivation of the epidermal growth factor receptor via matrix metalloproteinase-8.
Acta Physiol (Oxf). 2009 Dec;197(4):265-71. doi: 10.1111/j.1748-1716.2009.02018.x. Epub 2009 Jul 6.
4
Connexin43 in cardiomyocyte mitochondria contributes to mitochondrial potassium uptake.
Cardiovasc Res. 2009 Sep 1;83(4):747-56. doi: 10.1093/cvr/cvp157. Epub 2009 May 21.
5
The mitochondrial permeability transition pore as a target for preconditioning and postconditioning.
Basic Res Cardiol. 2009 Mar;104(2):189-202. doi: 10.1007/s00395-009-0010-x. Epub 2009 Feb 26.
6
The mitochondrial permeability transition pore and ischemia-reperfusion injury.
Basic Res Cardiol. 2009 Mar;104(2):181-8. doi: 10.1007/s00395-009-0004-8. Epub 2009 Feb 26.
7
The molecular composition of the mitochondrial permeability transition pore.
J Mol Cell Cardiol. 2009 Jun;46(6):850-7. doi: 10.1016/j.yjmcc.2009.02.007. Epub 2009 Feb 20.
8
Inhibition of mitochondrial permeability transition pore opening: translation to patients.
Cardiovasc Res. 2009 Jul 15;83(2):226-33. doi: 10.1093/cvr/cvp063. Epub 2009 Feb 16.
9
Cardioprotective signaling to mitochondria.
J Mol Cell Cardiol. 2009 Jun;46(6):858-66. doi: 10.1016/j.yjmcc.2008.11.019. Epub 2008 Dec 11.
10
Targeting sphingosine-1-phosphate signalling for cardioprotection.
Curr Opin Pharmacol. 2009 Apr;9(2):194-201. doi: 10.1016/j.coph.2008.11.002. Epub 2008 Dec 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验