Suppr超能文献

固/液/液体系中离子液体的静态和动态电润湿。

Static and dynamic electrowetting of an ionic liquid in a solid/liquid/liquid system.

机构信息

Ian Wark Research Institute, ARC Special Research Centre for Particle and Material Interfaces, University of South Australia, Mawson Lakes, SA 5095, Australia.

出版信息

J Am Chem Soc. 2010 Jun 23;132(24):8301-8. doi: 10.1021/ja9106397.

Abstract

A droplet of an ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate, bmim.BF(4)) is immersed in an immiscible liquid (n-hexadecane) and electrowetted on a flat Teflon AF1600-coated ITO electrode. The static contact angle decreases significantly when voltage is applied between the droplet and the electrode: from 145 degrees down to 50 degrees (with DC voltage) and 15 degrees (with AC voltage). The electrowetting curves (contact angle versus voltage) are similar to the ones obtained in other solid/liquid/vapor and solid/liquid/liquid systems: symmetric with respect to zero voltage and correctly described by Young-Lippmann equation below saturation. The reversibility is excellent and contact angle hysteresis is minimal (approximately 2 degrees). The step size used in applying the DC voltage and the polarity of the voltage are unimportant. The saturation contact angle cannot be predicted with the simple zero-interfacial tension theory. Spreading (after applying a DC voltage) and retraction (after switching off the voltage) of the droplet is monitored. The base area of the droplet varies exponentially during wetting (exponential saturation) and dewetting (exponential decay). The characteristic time is 20 ms for spreading and 35 ms for retraction (such asymmetry is not observed with water-glycerol mixtures of a similar viscosity). The spreading kinetics (dynamic contact angle versus contact line speed) can be described by the hydrodynamic model (Voinov's equation) for small contact angles and by the molecular-kinetic model (Blake's equation) for large contact angles. The role of viscous and molecular dissipation follows the scheme outlined by Brochard-Wyart and de Gennes.

摘要

一滴离子液体(1-丁基-3-甲基咪唑四氟硼酸盐,bmim.BF(4))浸入不混溶的液体(正十六烷)中,并在平坦的聚四氟乙烯 AF1600 涂覆的 ITO 电极上进行电润湿。当在液滴和电极之间施加电压时,静态接触角显著降低:从 145 度降至 50 度(直流电压)和 15 度(交流电压)。电润湿曲线(接触角与电压的关系)与在其他固/液/气和固/液/液系统中获得的曲线相似:关于零电压对称,并由饱和以下的 Young-Lippmann 方程正确描述。可逆性非常好,接触角滞后最小(约 2 度)。施加直流电压的步长和电压的极性并不重要。简单的零界面张力理论无法预测饱和接触角。监测液滴的扩展(施加直流电压后)和收缩(关闭电压后)。在润湿过程中(施加直流电压后)和去湿过程中(关闭电压后),液滴的基底面积呈指数变化。特征时间为扩展 20ms,收缩 35ms(用类似粘度的水-甘油混合物观察不到这种不对称性)。扩展动力学(动态接触角与接触线速度的关系)可以用小接触角的流体动力学模型(Voinov 方程)和大接触角的分子动力学模型(Blake 方程)来描述。粘性和分子耗散的作用遵循 Brochard-Wyart 和 de Gennes 提出的方案。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验