Suppr超能文献

串联弹性减震器:肌腱在离心动作中减弱肌肉力量。

The series-elastic shock absorber: tendons attenuate muscle power during eccentric actions.

作者信息

Roberts Thomas J, Azizi Emanuel

机构信息

Brown Univ., Dept. of Ecology and Evolutionary Biology, Box G-B205, Providence, RI, USA.

出版信息

J Appl Physiol (1985). 2010 Aug;109(2):396-404. doi: 10.1152/japplphysiol.01272.2009. Epub 2010 May 27.

Abstract

Elastic tendons can act as muscle power amplifiers or energy-conserving springs during locomotion. We used an in situ muscle-tendon preparation to examine the mechanical function of tendons during lengthening contractions, when muscles absorb energy. Force, length, and power were measured in the lateral gastrocnemius muscle of wild turkeys. Sonomicrometry was used to measure muscle fascicle length independently from muscle-tendon unit (MTU) length, as measured by a muscle lever system (servomotor). A series of ramp stretches of varying velocities was applied to the MTU in fully activated muscles. Fascicle length changes were decoupled from length changes imposed on the MTU by the servomotor. Under most conditions, muscle fascicles shortened on average, while the MTU lengthened. Energy input to the MTU during the fastest lengthenings was -54.4 J/kg, while estimated work input to the muscle fascicles during this period was only -11.24 J/kg. This discrepancy indicates that energy was first absorbed by elastic elements, then released to do work on muscle fascicles after the lengthening phase of the contraction. The temporary storage of energy by elastic elements also resulted in a significant attenuation of power input to the muscle fascicles. At the fastest lengthening rates, peak instantaneous power input to the MTU reached -2,143.9 W/kg, while peak power input to the fascicles was only -557.6 W/kg. These results demonstrate that tendons may act as mechanical buffers by limiting peak muscle forces, lengthening rates, and power inputs during energy-absorbing contractions.

摘要

弹性肌腱在运动过程中可充当肌肉功率放大器或节能弹簧。我们采用原位肌肉 - 肌腱标本,以研究在肌肉吸收能量的延长收缩过程中肌腱的机械功能。在野生火鸡的外侧腓肠肌中测量了力、长度和功率。使用超声测量法独立于肌肉杠杆系统(伺服电机)测量的肌肉 - 肌腱单元(MTU)长度来测量肌肉束长度。对完全激活的肌肉中的MTU施加一系列不同速度的斜坡拉伸。肌肉束长度变化与伺服电机施加在MTU上的长度变化解耦。在大多数情况下,肌肉束平均缩短,而MTU延长。在最快延长过程中,MTU的能量输入为 -54.4 J/kg,而在此期间估计的肌肉束功输入仅为 -11.24 J/kg。这种差异表明能量首先被弹性元件吸收,然后在收缩的延长阶段后释放以对肌肉束做功。弹性元件对能量的临时储存还导致输入到肌肉束的功率显著衰减。在最快的延长速率下,MTU的峰值瞬时功率输入达到 -2,143.9 W/kg,而肌肉束的峰值功率输入仅为 -557.6 W/kg。这些结果表明,肌腱可能通过在能量吸收收缩过程中限制峰值肌肉力、延长速率和功率输入来充当机械缓冲器。

相似文献

1
The series-elastic shock absorber: tendons attenuate muscle power during eccentric actions.
J Appl Physiol (1985). 2010 Aug;109(2):396-404. doi: 10.1152/japplphysiol.01272.2009. Epub 2010 May 27.
2
Muscle power attenuation by tendon during energy dissipation.
Proc Biol Sci. 2012 Mar 22;279(1731):1108-13. doi: 10.1098/rspb.2011.1435. Epub 2011 Sep 28.
4
Timing matters: tuning the mechanics of a muscle-tendon unit by adjusting stimulation phase during cyclic contractions.
J Exp Biol. 2015 Oct;218(Pt 19):3150-9. doi: 10.1242/jeb.121673. Epub 2015 Jul 31.
6
Power amplification in an isolated muscle-tendon unit is load dependent.
J Exp Biol. 2015 Nov;218(Pt 22):3700-9. doi: 10.1242/jeb.126235. Epub 2015 Oct 8.
7
Modulation of muscle-tendon interaction in the human triceps surae during an energy dissipation task.
J Exp Biol. 2017 Nov 15;220(Pt 22):4141-4149. doi: 10.1242/jeb.164111. Epub 2017 Sep 7.
8
Distinct muscle fascicle length changes in feline medial gastrocnemius and soleus muscles during slope walking.
J Appl Physiol (1985). 2009 Apr;106(4):1169-80. doi: 10.1152/japplphysiol.01306.2007. Epub 2009 Jan 22.
9
Effect of a prehop on the muscle-tendon interaction during vertical jumps.
J Appl Physiol (1985). 2018 May 1;124(5):1203-1211. doi: 10.1152/japplphysiol.00462.2017. Epub 2017 Aug 3.

引用本文的文献

1
Skeletal muscle elastic modulus in marathon distance runners.
Eur J Appl Physiol. 2025 Jan 23. doi: 10.1007/s00421-025-05708-2.
2
Muscle-tendon unit design and tuning for power enhancement, power attenuation, and reduction of metabolic cost.
J Biomech. 2023 May;153:111585. doi: 10.1016/j.jbiomech.2023.111585. Epub 2023 Apr 13.
3
Muscle prestimulation tunes velocity preflex in simulated perturbed hopping.
Sci Rep. 2023 Mar 20;13(1):4559. doi: 10.1038/s41598-023-31179-6.
5
Adolescent Running Biomechanics - Implications for Injury Prevention and Rehabilitation.
Front Sports Act Living. 2021 Aug 26;3:689846. doi: 10.3389/fspor.2021.689846. eCollection 2021.
6
Power Amplification Increases With Contraction Velocity During Stretch-Shortening Cycles of Skinned Muscle Fibers.
Front Physiol. 2021 Mar 31;12:644981. doi: 10.3389/fphys.2021.644981. eCollection 2021.
7
Series elasticity facilitates safe plantar flexor muscle-tendon shock absorption during perturbed human hopping.
Proc Biol Sci. 2021 Mar 31;288(1947):20210201. doi: 10.1098/rspb.2021.0201. Epub 2021 Mar 17.
8
Evolution of a high-performance and functionally robust musculoskeletal system in salamanders.
Proc Natl Acad Sci U S A. 2020 May 12;117(19):10445-10454. doi: 10.1073/pnas.1921807117. Epub 2020 Apr 27.
9
Skeletal Muscle Shape Change in Relation to Varying Force Requirements Across Locomotor Conditions.
Front Physiol. 2020 Mar 20;11:143. doi: 10.3389/fphys.2020.00143. eCollection 2020.

本文引用的文献

1
Mechanical properties of the gastrocnemius aponeurosis in wild turkeys.
Integr Comp Biol. 2009 Jul;49(1):51-8. doi: 10.1093/icb/icp006. Epub 2009 Apr 8.
2
Variable gearing in pennate muscles.
Proc Natl Acad Sci U S A. 2008 Feb 5;105(5):1745-50. doi: 10.1073/pnas.0709212105. Epub 2008 Jan 29.
3
Functional diversification within and between muscle synergists during locomotion.
Biol Lett. 2008 Feb 23;4(1):41-4. doi: 10.1098/rsbl.2007.0472.
4
Relative shortening velocity in locomotor muscles: turkey ankle extensors operate at low V/V(max).
Am J Physiol Regul Integr Comp Physiol. 2008 Jan;294(1):R200-10. doi: 10.1152/ajpregu.00473.2007. Epub 2007 Oct 31.
5
Determinants of force rise time during isometric contraction of frog muscle fibres.
J Physiol. 2007 May 1;580(Pt.3):1007-19. doi: 10.1113/jphysiol.2006.119982. Epub 2007 Feb 15.
6
Simulation of biceps femoris musculotendon mechanics during the swing phase of sprinting.
Med Sci Sports Exerc. 2005 Nov;37(11):1931-8. doi: 10.1249/01.mss.0000176674.42929.de.
7
Force-velocity properties of two avian hindlimb muscles.
Comp Biochem Physiol A Mol Integr Physiol. 2004 Apr;137(4):711-21. doi: 10.1016/j.cbpb.2004.02.004.
8
MECHANICAL WORK IN RUNNING.
J Appl Physiol. 1964 Mar;19:249-56. doi: 10.1152/jappl.1964.19.2.249.
9
Probing the limits to muscle-powered accelerations: lessons from jumping bullfrogs.
J Exp Biol. 2003 Aug;206(Pt 15):2567-80. doi: 10.1242/jeb.00452.
10
Behavior of human muscle fascicles during shortening and lengthening contractions in vivo.
J Appl Physiol (1985). 2003 Sep;95(3):1090-6. doi: 10.1152/japplphysiol.01046.2002. Epub 2003 May 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验