Department of Radiation Oncology, Stanford University, Stanford, CA 94305-5847, USA.
Phys Med Biol. 2010 Jun 21;55(12):3417-40. doi: 10.1088/0031-9155/55/12/010. Epub 2010 May 28.
This paper presents a fast and accurate marker-based automatic registration technique for aligning uncalibrated projections taken from a transmission electron microscope (TEM) with different tilt angles and orientations. Most of the existing TEM image alignment methods estimate the similarity between images using the projection model with least-squares metric and guess alignment parameters by computationally expensive nonlinear optimization schemes. Approaches based on the least-squares metric which is sensitive to outliers may cause misalignment since automatic tracking methods, though reliable, can produce a few incorrect trajectories due to a large number of marker points. To decrease the influence of outliers, we propose a robust similarity measure using the projection model with a Gaussian weighting function. This function is very effective in suppressing outliers that are far from correct trajectories and thus provides a more robust metric. In addition, we suggest a fast search strategy based on the non-gradient Powell's multidimensional optimization scheme to speed up optimization as only meaningful parameters are considered during iterative projection model estimation. Experimental results show that our method brings more accurate alignment with less computational cost compared to conventional automatic alignment methods.
本文提出了一种快速准确的基于标记的自动配准技术,用于对齐来自透射电子显微镜(TEM)的未经校准的投影,这些投影具有不同的倾斜角度和方向。大多数现有的 TEM 图像配准方法使用最小二乘度量的投影模型来估计图像之间的相似性,并通过计算成本高的非线性优化方案来猜测配准参数。基于最小二乘度量的方法容易受到异常值的影响,可能会导致配准错误,因为自动跟踪方法虽然可靠,但由于标记点数量众多,可能会产生一些不正确的轨迹。为了降低异常值的影响,我们提出了一种使用具有高斯权函数的投影模型的鲁棒相似性度量。该函数在抑制远离正确轨迹的异常值方面非常有效,从而提供了更稳健的度量。此外,我们建议了一种基于非梯度 Powell 多维优化方案的快速搜索策略,以加快优化速度,因为在迭代投影模型估计过程中仅考虑有意义的参数。实验结果表明,与传统的自动配准方法相比,我们的方法具有更高的配准精度和更低的计算成本。