Suppr超能文献

使用高斯混合模型分离相干反斯托克斯拉曼散射(CARS)图像贡献

Separation of CARS image contributions with a Gaussian mixture model.

作者信息

Vogler Nadine, Bocklitz Thomas, Mariani Melissa, Deckert Volker, Markova Aneta, Schelkens Peter, Rösch Petra, Akimov Denis, Dietzek Benjamin, Popp Jürgen

机构信息

Institute of Photonic Technology Jena, Albert-Einstein-Strasse 9, D-07745 Jena, Germany.

出版信息

J Opt Soc Am A Opt Image Sci Vis. 2010 Jun 1;27(6):1361-71. doi: 10.1364/JOSAA.27.001361.

Abstract

Coherent anti-Stokes Raman scattering (CARS) gained a lot of importance in chemical imaging. This is due to the fast image acquisition time, the high spatial resolution, the non-invasiveness, and the molecular sensitivity of this method. By using the single-line CARS in contrast to the multiplex CARS, different signal contributions stemming from resonant and non-resonant light-matter interactions are indistinguishable. Here a numerical method is presented in order to extract more information from univariate CARS images: vibrational composition, morphological information, and contributions from index-of-refraction steps can be separated from single-line CARS images. The image processing algorithm is based on the physical properties of CARS process as reflected in the shape of the intensity histogram of univariate CARS images. Because of this the comparability of individual CARS images recorded with different experimental parameters is achieved. The latter is important for a quantitative evaluation of CARS images.

摘要

相干反斯托克斯拉曼散射(CARS)在化学成像中具有重要意义。这归因于该方法快速的图像采集时间、高空间分辨率、非侵入性以及分子敏感性。与多通道CARS相比,使用单通道CARS时,由共振和非共振光与物质相互作用产生的不同信号贡献难以区分。本文提出一种数值方法,以便从单通道CARS图像中提取更多信息:振动成分、形态信息以及折射率阶跃的贡献可以从单通道CARS图像中分离出来。图像处理算法基于单通道CARS图像强度直方图形状所反映的CARS过程的物理特性。因此,实现了用不同实验参数记录的各个CARS图像的可比性。后者对于CARS图像的定量评估很重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验