Suppr超能文献

一个真实的小脑颗粒层大规模模型预测了电路时空滤波特性。

A realistic large-scale model of the cerebellum granular layer predicts circuit spatio-temporal filtering properties.

机构信息

Department of Physiology, University of Pavia and Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia Pavia, Italy.

出版信息

Front Cell Neurosci. 2010 May 14;4:12. doi: 10.3389/fncel.2010.00012. eCollection 2010.

Abstract

The way the cerebellar granular layer transforms incoming mossy fiber signals into new spike patterns to be related to Purkinje cells is not yet clear. Here, a realistic computational model of the granular layer was developed and used to address four main functional hypotheses: center-surround organization, time-windowing, high-pass filtering in responses to spike bursts and coherent oscillations in response to diffuse random activity. The model network was activated using patterns inspired by those recorded in vivo. Burst stimulation of a small mossy fiber bundle resulted in granule cell bursts delimited in time (time windowing) and space (center-surround) by network inhibition. This burst-burst transmission showed marked frequency-dependence configuring a high-pass filter with cut-off frequency around 100 Hz. The contrast between center and surround properties was regulated by the excitatory-inhibitory balance. The stronger excitation made the center more responsive to 10-50 Hz input frequencies and enhanced the granule cell output (with spikes occurring earlier and with higher frequency and number) compared to the surround. Finally, over a certain level of mossy fiber background activity, the circuit generated coherent oscillations in the theta-frequency band. All these processes were fine-tuned by NMDA and GABA-A receptor activation and neurotransmitter vesicle cycling in the cerebellar glomeruli. This model shows that available knowledge on cellular mechanisms is sufficient to unify the main functional hypotheses on the cerebellum granular layer and suggests that this network can behave as an adaptable spatio-temporal filter coordinated by theta-frequency oscillations.

摘要

小脑颗粒层将传入的苔藓纤维信号转换为与浦肯野细胞相关的新的尖峰模式的方式尚不清楚。在这里,开发了一个现实的颗粒层计算模型,并用于解决四个主要的功能假设:中心-周围组织、时间窗口、对尖峰爆发的高通滤波以及对弥散随机活动的相干振荡的响应。使用受体内记录启发的模式来激活模型网络。一小束苔藓纤维的爆发刺激导致颗粒细胞爆发,在时间(时间窗口)和空间(中心-周围)上受到网络抑制的限制。这种爆发-爆发传递显示出明显的频率依赖性,构成了一个截止频率约为 100 Hz 的高通滤波器。中心和周围特性之间的对比度由兴奋-抑制平衡调节。更强的兴奋使中心对 10-50 Hz 的输入频率更敏感,并增强了颗粒细胞的输出(与周围相比,尖峰更早、频率更高、数量更多)。最后,在苔藓纤维背景活动达到一定水平后,电路在θ频带中产生了相干振荡。所有这些过程都通过 NMDA 和 GABA-A 受体激活以及小脑小球中的神经递质囊泡循环进行微调。该模型表明,有关细胞机制的现有知识足以统一小脑颗粒层的主要功能假设,并表明该网络可以作为一个可适应的时空滤波器,由θ频振荡协调。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffed/2876868/4ee9add3de67/fncel-04-00012-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验