Suppr超能文献

小脑颗粒细胞层详细网络模型中高尔基体与颗粒细胞放电的同步化

Synchronization of golgi and granule cell firing in a detailed network model of the cerebellar granule cell layer.

作者信息

Maex R, De Schutter E

机构信息

Born-Bunge Foundation, University of Antwerp, B-2610 Antwerp, Belgium.

出版信息

J Neurophysiol. 1998 Nov;80(5):2521-37. doi: 10.1152/jn.1998.80.5.2521.

Abstract

The granular layer of the cerebellum has a disproportionately large number of excitatory (granule cells) versus inhibitory neurons (Golgi cells). Its synaptic organization is also unique with a dense reciprocal innervation between granule and Golgi cells but without synaptic contacts among the neurons of either population. Physiological recordings of granule or Golgi cell activity are scarce, and our current thinking about the way the granular layer functions is based almost exclusively on theoretical considerations. We computed the steady-state activity of a large-scale model of the granular layer of the rat cerebellum. Within a few tens of milliseconds after the start of random mossy fiber input, the populations of Golgi and granule cells became entrained in a single synchronous oscillation, the basic frequency of which ranged from 10 to 40 Hz depending on the average rate of firing in the mossy fiber population. The long parallel fibers ensured, through alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-mediated synapses, a coherent excitation of Golgi cells, while the regular firing of each Golgi cell synchronized all granule cells within its axonal radius through transient activation of their gamma-aminobutyric acid-A (GABAA) receptor synapses. Individual granule cells often remained silent during a few successive oscillation cycles so that their average firing rates, which could be quite variable, reflected the average activities of their mossy fiber afferents. The synchronous, rhythmic firing pattern was robust over a broad range of biologically realistic parameter values and to parameter randomization. Three conditions, however, made the oscillations more transient and could desynchronize the entire network in the end: a very low mossy fiber activity, a very dominant excitation of Golgi cells through mossy fiber synapses (rather than through parallel fiber synapses), and a tonic activation of granule cell GABAA receptors (with an almost complete absence of synaptically induced inhibitory postsynaptic currents). These three conditions were associated with a reduction in the parallel fiber activity, and synchrony could be restored by increasing the mossy fiber firing rate. The model predicts that, under conditions of strong mossy fiber input to the cerebellum, Golgi cells do not only control the strength of parallel fiber activity but also the timing of the individual spikes. Provided that their parallel fiber synapses constitute an important source of excitation, Golgi cells fire rhythmically and synchronized with granule cells over large distances along the parallel fiber axis. According to the model, the granular layer of the cerebellum is desynchronized when the mossy fiber firing rate is low.

摘要

小脑颗粒层中兴奋性神经元(颗粒细胞)的数量相对于抑制性神经元(高尔基细胞)而言多得不成比例。其突触组织也很独特,颗粒细胞和高尔基细胞之间存在密集的相互支配,但这两类神经元群体内部的神经元之间没有突触联系。关于颗粒细胞或高尔基细胞活动的生理学记录很少,我们目前对颗粒层功能方式的认识几乎完全基于理论思考。我们计算了大鼠小脑颗粒层大规模模型的稳态活动。在随机苔藓纤维输入开始后的几十毫秒内,高尔基细胞群和颗粒细胞群被卷入单一的同步振荡中,其基本频率根据苔藓纤维群的平均放电率在10至40赫兹范围内变化。长平行纤维通过α-氨基-3-羟基-5-甲基-4-异恶唑丙酸介导的突触确保了高尔基细胞的相干兴奋,而每个高尔基细胞的规律放电通过瞬时激活其γ-氨基丁酸-A(GABAA)受体突触使轴突半径内的所有颗粒细胞同步。单个颗粒细胞在几个连续的振荡周期中常常保持沉默,因此它们的平均放电率可能变化很大,反映了其苔藓纤维传入纤维的平均活动。这种同步的、有节奏的放电模式在广泛的生物学现实参数值范围内以及参数随机化情况下都很稳健。然而,有三种情况会使振荡更短暂,最终可能使整个网络去同步:苔藓纤维活动非常低、通过苔藓纤维突触对高尔基细胞的兴奋性非常占主导地位(而不是通过平行纤维突触)以及颗粒细胞GABAA受体的强直激活(几乎完全没有突触诱导的抑制性突触后电流)。这三种情况与平行纤维活动的减少有关,通过增加苔藓纤维放电率可以恢复同步。该模型预测,在苔藓纤维向小脑强烈输入的情况下,高尔基细胞不仅控制平行纤维活动的强度,还控制单个尖峰的时间。假设它们的平行纤维突触构成重要的兴奋源,高尔基细胞会有节奏地放电,并在沿着平行纤维轴的远距离上与颗粒细胞同步。根据该模型,当苔藓纤维放电率较低时,小脑颗粒层会去同步。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验