Suppr超能文献

基于现场可编程门阵列的人工小脑:能够进行现实世界自适应运动控制的逼真实时小脑脉冲神经网络模型。

Artificial cerebellum on FPGA: realistic real-time cerebellar spiking neural network model capable of real-world adaptive motor control.

作者信息

Shinji Yusuke, Okuno Hirotsugu, Hirata Yutaka

机构信息

Department of Computer Science, Graduate School of Engineering, Chubu University, Kasugai, Japan.

Faculty of Information Science and Technology, Osaka Institute of Technology, Hirakata, Japan.

出版信息

Front Neurosci. 2024 Apr 25;18:1220908. doi: 10.3389/fnins.2024.1220908. eCollection 2024.

Abstract

The cerebellum plays a central role in motor control and learning. Its neuronal network architecture, firing characteristics of component neurons, and learning rules at their synapses have been well understood in terms of anatomy and physiology. A realistic artificial cerebellum with mimetic network architecture and synaptic plasticity mechanisms may allow us to analyze cerebellar information processing in the real world by applying it to adaptive control of actual machines. Several artificial cerebellums have previously been constructed, but they require high-performance hardware to run in real-time for real-world machine control. Presently, we implemented an artificial cerebellum with the size of 10 spiking neuron models on a field-programmable gate array (FPGA) which is compact, lightweight, portable, and low-power-consumption. In the implementation three novel techniques are employed: (1) 16-bit fixed-point operation and randomized rounding, (2) fully connected spike information transmission, and (3) alternative memory that uses pseudo-random number generators. We demonstrate that the FPGA artificial cerebellum runs in real-time, and its component neuron models behave as those in the corresponding artificial cerebellum configured on a personal computer in Python. We applied the FPGA artificial cerebellum to the adaptive control of a machine in the real world and demonstrated that the artificial cerebellum is capable of adaptively reducing control error after sudden load changes. This is the first implementation and demonstration of a spiking artificial cerebellum on an FPGA applicable to real-world adaptive control. The FPGA artificial cerebellum may provide neuroscientific insights into cerebellar information processing in adaptive motor control and may be applied to various neuro-devices to augment and extend human motor control capabilities.

摘要

小脑在运动控制和学习中起着核心作用。从小脑的解剖学和生理学角度来看,其神经元网络结构、组成神经元的放电特性以及突触处的学习规则已被充分了解。具有模拟网络结构和突触可塑性机制的逼真人工小脑,或许能让我们通过将其应用于实际机器的自适应控制,来分析现实世界中的小脑信息处理过程。此前已经构建了几种人工小脑,但它们需要高性能硬件才能实时运行以用于现实世界的机器控制。目前,我们在现场可编程门阵列(FPGA)上实现了一个由10个脉冲神经元模型组成的人工小脑,该FPGA具有紧凑、轻便、便携和低功耗的特点。在实现过程中采用了三种新技术:(1)16位定点运算和随机舍入,(2)全连接脉冲信息传输,以及(3)使用伪随机数生成器的替代存储器。我们证明了FPGA人工小脑能够实时运行,并且其组成神经元模型的行为与在Python中配置在个人计算机上的相应人工小脑中的模型一致。我们将FPGA人工小脑应用于现实世界中机器的自适应控制,并证明了该人工小脑能够在突然负载变化后自适应地减少控制误差。这是首次在FPGA上实现并演示适用于现实世界自适应控制的脉冲人工小脑。FPGA人工小脑可能为自适应运动控制中小脑信息处理提供神经科学见解,并可能应用于各种神经设备以增强和扩展人类运动控制能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/798b/11079192/715c0f66f047/fnins-18-1220908-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验