Michel F Marc, Hosein Hazel-Ann, Hausner Douglas B, Debnath Sudeep, Parise John B, Strongin Daniel R
Department of Geosciences, Stony Brook University, Stony Brook, NY 11794, USA.
Biochim Biophys Acta. 2010 Aug;1800(8):871-85. doi: 10.1016/j.bbagen.2010.05.007. Epub 2010 May 25.
In nature or in the laboratory, the roughly spherical interior of the ferritin protein is well suited for the formation and storage of a variety of nanosized metal oxy-hydroxide compounds which hold promise for a range of applications. However, the linkages between ferritin reactivity and the structure and physicochemical properties of the nanoparticle core, either native or reconstituted, remain only partly understood.
Here we review studies, including those from our laboratory, which have investigated the structure of ferritin-derived ferrihydrite and reactivity of ferritin, both native and reconstituted. Selected proposed structure models for ferrihydrite are discussed along with the structural and genetic relationships that exist among several different forms of ferrihydrite. With regard to reactivity, the review will emphasize studies that have investigated the (photo)reactivity of ferritin and ferritin-derived materials with environmentally relevant gaseous and aqueous species.
The inorganic core formed from apoferritin reconstituted with varied amounts of Fe has the same structural topology as the inorganically derived ferrihydrite that is an important component of many environmental and soil systems. Reactivity of ferritin toward aqueous species resulting from the photoexcitation of the inorganic core of the protein shows promise for driving redox reactions relevant to environmental chemistry.
Ferritin-derived ferrihydrite is effectively maintained in a relatively unaggregated state, which improves reactivity and opens the possibility of future applications in environmental remediation. Advances in our understanding of the structure, composition, and disorder in synthetic, inorganically derived ferrihydrite are shedding new light on the reactivity and stability of ferrihydrite derived artificially from ferritin.
在自然界或实验室中,铁蛋白的大致球形内部非常适合形成和储存各种纳米尺寸的金属羟基氧化物化合物,这些化合物在一系列应用中具有前景。然而,铁蛋白的反应活性与天然或重构的纳米颗粒核心的结构和物理化学性质之间的联系仍仅部分为人所知。
在此,我们综述了包括我们实验室研究在内的各项研究,这些研究调查了铁蛋白衍生的水铁矿的结构以及天然和重构铁蛋白的反应活性。讨论了选定的水铁矿结构模型,以及几种不同形式水铁矿之间存在的结构和遗传关系。关于反应活性,综述将重点关注研究铁蛋白和铁蛋白衍生材料与环境相关气态和水相物质的(光)反应活性的研究。
用不同量的铁重构脱铁铁蛋白形成的无机核心具有与无机衍生的水铁矿相同的结构拓扑,水铁矿是许多环境和土壤系统的重要组成部分。蛋白质无机核心的光激发导致铁蛋白对水相物质的反应活性显示出推动与环境化学相关的氧化还原反应的潜力。
铁蛋白衍生的水铁矿有效地保持在相对未聚集的状态,这提高了反应活性,并为未来在环境修复中的应用开辟了可能性。我们对合成的、无机衍生的水铁矿的结构、组成和无序性的理解取得的进展,正在为铁蛋白人工衍生的水铁矿的反应活性和稳定性带来新的认识。