Suppr超能文献

利用铁蛋白蛋白纳米笼解决生物学的铁化学问题。

Solving Biology's Iron Chemistry Problem with Ferritin Protein Nanocages.

机构信息

Children's Hospital Oakland Research Institute , Oakland, California 94609, United States.

Department of Structural and Molecular Biochemistry, North Carolina State University , Raleigh, North Carolina 27695-7313, United States.

出版信息

Acc Chem Res. 2016 May 17;49(5):784-91. doi: 10.1021/ar500469e. Epub 2016 May 2.

Abstract

Ferritins reversibly synthesize iron-oxy(ferrihydrite) biominerals inside large, hollow protein nanocages (10-12 nm, ∼480 000 g/mol); the iron biominerals are metabolic iron concentrates for iron protein biosyntheses. Protein cages of 12- or 24-folded ferritin subunits (4-α-helix polypeptide bundles) self-assemble, experimentally. Ferritin biomineral structures differ among animals and plants or bacteria. The basic ferritin mineral structure is ferrihydrite (Fe2O3·H2O) with either low phosphate in the highly ordered animal ferritin biominerals, Fe/PO4 ∼ 8:1, or Fe/PO4 ∼ 1:1 in the more amorphous ferritin biominerals of plants and bacteria. While different ferritin environments, plant bacterial-like plastid organelles and animal cytoplasm, might explain ferritin biomineral differences, investigation is required. Currently, the physiological significance of plant-specific and animal-specific ferritin iron minerals is unknown. The iron content of ferritin in living tissues ranges from zero in "apoferritin" to as high as ∼4500 iron atoms. Ferritin biomineralization begins with the reaction of Fe(2+) with O2 at ferritin enzyme (Fe(2+)/O oxidoreductase) sites. The product of ferritin enzyme activity, diferric oxy complexes, is also the precursor of ferritin biomineral. Concentrations of Fe(3+) equivalent to 2.0 × 10(-1) M are maintained in ferritin solutions, contrasting with the Fe(3+) Ks ∼ 10(-18) M. Iron ions move into, through, and out of ferritin protein cages in structural subdomains containing conserved amino acids. Cage subdomains include (1) ion channels for Fe(2+) entry/exit, (2) enzyme (oxidoreductase) site for coupling Fe(2+) and O yielding diferric oxy biomineral precursors, and (3) ferric oxy nucleation channels, where diferric oxy products from up to three enzyme sites interact while moving toward the central, biomineral growth cavity (12 nm diameter) where ferric oxy species, now 48-mers, grow in ferric oxy biomineral. High ferritin protein cage symmetry (3-fold and 4-fold axes) and amino acid conservation coincide with function, shown by amino acid substitution effects. 3-Fold symmetry axes control Fe(2+) entry (enzyme catalysis of Fe(2+)/O2 oxidoreduction) and Fe(2+) exit (reductive ferritin mineral dissolution); 3-fold symmetry axes influence Fe(2+)exit from dissolved mineral; bacterial ferritins diverge slightly in Fe/O2 reaction mechanisms and intracage paths of iron-oxy complexes. Biosynthesis rates of ferritin protein change with Fe(2+) and O2 concentrations, dependent on DNA-binding, and heme binding protein, Bach 1. Increased cellular O2 indirectly stabilizes ferritin DNA/Bach 1 interactions. Heme, Fe-protoporphyrin IX, decreases ferritin DNA-Bach 1 binding, causing increased ferritin mRNA biosynthesis (transcription). Direct Fe(2+) binding to ferritin mRNA decreases binding of an inhibitory protein, IRP, causing increased ferritin mRNA translation (protein biosynthesis). Newly synthesized ferritin protein consumes Fe(2+) in biomineral, decreasing Fe(2)(+) and creating a regulatory feedback loop. Ferritin without iron is "apoferritin". Iron removal from ferritin, experimentally, uses biological reductants, for example, NADH + FMN, or chemical reductants, for example, thioglycolic acid, with Fe(2+) chelators; physiological mechanism(s) are murky. Clear, however, is the necessity of ferritin for terrestrial life by conferring oxidant protection (plants, animals, and bacteria), virulence (bacteria), and embryonic survival (mammals). Future studies of ferritin structure/function and Fe(2+)/O2 chemistry will lead to new ferritin uses in medicine, nutrition, and nanochemistry.

摘要

铁蛋白可逆地在大型中空蛋白纳米笼内合成铁氧(水铁矿)生物矿物(10-12nm,约 480000g/mol);这些铁生物矿物是铁蛋白生物合成的代谢铁浓缩物。12 或 24 倍折叠的铁蛋白亚基(4-α-螺旋多肽束)的蛋白笼在实验中自组装。动物和植物或细菌中的铁蛋白生物矿物结构不同。基本的铁蛋白矿物结构是水铁矿(Fe2O3·H2O),动物铁蛋白生物矿物中的磷酸盐含量较低,Fe/PO4 约为 8:1,而植物和细菌中更无定形的铁蛋白生物矿物中的 Fe/PO4 约为 1:1。虽然不同的铁蛋白环境,如植物细菌样质体和动物细胞质,可能解释铁蛋白生物矿物的差异,但需要进一步研究。目前,植物特异性和动物特异性铁蛋白铁矿物的生理意义尚不清楚。活体组织中铁蛋白的铁含量从“脱铁蛋白”中的零到高达约 4500 个铁原子不等。铁蛋白生物矿化始于铁蛋白酶(Fe(2+)/O 氧化还原酶)位点上 Fe(2+)与 O2 的反应。铁蛋白酶活性的产物,二铁氧复合物,也是铁蛋白生物矿化的前体。铁蛋白溶液中维持着相当于 2.0×10(-1)M 的 Fe(3+)等效浓度,与 Fe(3+)Ks 约 10(-18)M 形成对比。铁离子通过包含保守氨基酸的结构亚域进出铁蛋白蛋白笼。笼亚域包括(1)Fe(2+)进入/退出的离子通道,(2)用于耦合 Fe(2+)和 O 生成二铁氧生物矿化前体的酶(氧化还原酶)位点,以及(3)铁氧核化通道,其中多达三个酶位点的二铁氧产物相互作用,同时向中央生物矿化生长腔(12nm 直径)移动,在那里铁氧物种,现在是 48 聚体,在铁氧生物矿化中生长。铁蛋白高蛋白质笼对称性(3 倍和 4 倍轴)和氨基酸保守性与功能一致,这一点通过氨基酸取代效应得到了证明。3 倍对称轴控制 Fe(2+)的进入(Fe(2+)/O2 氧化还原酶的催化)和 Fe(2+)的退出(还原性铁蛋白矿物溶解);3 倍对称轴影响溶解矿物中的 Fe(2+)退出;细菌铁蛋白在 Fe/O2 反应机制和铁氧复合物的笼内路径上略有分歧。铁蛋白的生物合成速率随 Fe(2+)和 O2 浓度的变化而变化,这取决于 DNA 结合和血红素结合蛋白 Bach1。细胞内 O2 的增加间接稳定了铁蛋白 DNA/Bach1 相互作用。血红素,Fe-原卟啉 IX,降低铁蛋白 DNA-Bach1 结合,导致铁蛋白 mRNA 生物合成(转录)增加。Fe(2+)直接结合铁蛋白 mRNA 会降低抑制蛋白 IRP 的结合,从而导致铁蛋白 mRNA 翻译(蛋白质生物合成)增加。新合成的铁蛋白在生物矿化中消耗 Fe(2+),减少 Fe(2+)并产生调节反馈循环。没有铁的铁蛋白是“脱铁蛋白”。实验中,铁蛋白的铁去除使用生物还原剂,例如 NADH+FMN,或化学还原剂,例如硫醇酸,以及 Fe(2+)螯合剂;生理机制尚不清楚。然而,铁蛋白通过赋予抗氧化保护(植物、动物和细菌)、毒力(细菌)和胚胎存活(哺乳动物),对陆地生命是必要的。对铁蛋白结构/功能和 Fe(2+)/O2 化学的未来研究将导致铁蛋白在医学、营养和纳米化学方面的新用途。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验