Suppr超能文献

利用同步加速器 X 射线荧光对 SWI 高通滤波相位进行校准检测大脑铁含量。

Brain iron detected by SWI high pass filtered phase calibrated with synchrotron X-ray fluorescence.

机构信息

Department of Anatomy & Cell Biology, University of Saskatchewan, Saskatoon, SK, Canada.

出版信息

J Magn Reson Imaging. 2010 Jun;31(6):1346-54. doi: 10.1002/jmri.22201.

Abstract

PURPOSE

To test the ability of susceptibility weighted images (SWI) and high pass filtered phase images to localize and quantify brain iron.

MATERIALS AND METHODS

Magnetic resonance (MR) images of human cadaver brain hemispheres were collected using a gradient echo based SWI sequence at 1.5T. For X-ray fluorescence (XRF) mapping, each brain was cut to obtain slices that reasonably matched the MR images and iron was mapped at the iron K-edge at 50 or 100 microm resolution. Iron was quantified using XRF calibration foils. Phase and iron XRF were averaged within anatomic regions of one slice, chosen for its range of iron concentrations and nearly perfect anatomic correspondence. X-ray absorption spectroscopy (XAS) was used to determine if the chemical form of iron was different in regions with poorer correspondence between iron and phase.

RESULTS

Iron XRF maps, SWI, and high pass filtered phase data in nine brain slices from five subjects were visually very similar, particularly in high iron regions. The chemical form of iron could not explain poor matches. The correlation between the concentration of iron and phase in the cadaver brain was estimated as c(Fe) [microg/g tissue] = 850Deltavarpi + 110.

CONCLUSION

The phase shift Deltavarpi was found to vary linearly with iron concentration with the best correspondence found in regions with high iron content.

摘要

目的

测试磁化率加权成像(SWI)和高通滤波相位图像定位和量化脑铁的能力。

材料与方法

在 1.5T 场强下,使用基于梯度回波的 SWI 序列采集人尸脑半球的磁共振(MR)图像。对于 X 射线荧光(XRF)图谱,将每个大脑切割成与 MR 图像合理匹配的切片,并在铁 K 边缘以 50 或 100 微米的分辨率绘制铁图。使用 XRF 校准箔片对铁进行定量。相位和铁 XRF 在一个切片的解剖区域内进行平均,该切片选择的原因是其铁浓度范围和几乎完美的解剖对应关系。X 射线吸收光谱(XAS)用于确定在铁与相位之间对应性较差的区域中,铁的化学形式是否不同。

结果

来自五名受试者的九个脑切片的铁 XRF 图谱、SWI 和高通滤波相位数据在视觉上非常相似,尤其是在高铁区域。铁的化学形式无法解释较差的匹配。尸体脑中铁与相位之间浓度的相关性估计为 c(Fe)[μg/g 组织]=850Δvarpi+110。

结论

发现相位偏移Δvarpi 与铁浓度呈线性变化,在高铁含量区域的对应性最好。

相似文献

1
Brain iron detected by SWI high pass filtered phase calibrated with synchrotron X-ray fluorescence.
J Magn Reson Imaging. 2010 Jun;31(6):1346-54. doi: 10.1002/jmri.22201.
4
Imaging of stroke: a comparison between X-ray fluorescence and magnetic resonance imaging methods.
Magn Reson Imaging. 2012 Dec;30(10):1416-23. doi: 10.1016/j.mri.2012.04.011. Epub 2012 Jul 11.
6
Iron distribution and speciation in a 3D-printed hybrid food using synchrotron X-ray fluorescence and X-ray absorption spectroscopies.
Food Chem. 2025 Jan 15;463(Pt 1):141058. doi: 10.1016/j.foodchem.2024.141058. Epub 2024 Aug 30.
7
Iron (Fe) speciation in xylem sap by XANES at a high brilliant synchrotron X-ray source: opportunities and limitations.
Anal Bioanal Chem. 2013 Jun;405(16):5411-9. doi: 10.1007/s00216-013-6959-1. Epub 2013 Apr 24.
8
Measuring iron in the brain using quantitative susceptibility mapping and X-ray fluorescence imaging.
Neuroimage. 2013 Sep;78:68-74. doi: 10.1016/j.neuroimage.2013.04.022. Epub 2013 Apr 13.
9
Characterizing iron deposition in multiple sclerosis lesions using susceptibility weighted imaging.
J Magn Reson Imaging. 2009 Mar;29(3):537-44. doi: 10.1002/jmri.21676.
10

引用本文的文献

1
Evaluation of quantitative synchrotron radiation micro-X-ray fluorescence in rice grain.
J Synchrotron Radiat. 2023 Mar 1;30(Pt 2):407-416. doi: 10.1107/S1600577523000747. Epub 2023 Feb 15.
2
Iron and Alzheimer's Disease: From Pathology to Imaging.
Front Hum Neurosci. 2022 Jul 13;16:838692. doi: 10.3389/fnhum.2022.838692. eCollection 2022.
3
Semiautomated Algorithm for the Diagnosis of Multiple System Atrophy With Predominant Parkinsonism.
J Mov Disord. 2022 Sep;15(3):232-240. doi: 10.14802/jmd.21178. Epub 2022 Jul 26.
4
Matching MRI With Iron Histology: Pearls and Pitfalls.
Front Neuroanat. 2019 Jul 3;13:68. doi: 10.3389/fnana.2019.00068. eCollection 2019.
6
Pathogenic implications of distinct patterns of iron and zinc in chronic MS lesions.
Acta Neuropathol. 2017 Jul;134(1):45-64. doi: 10.1007/s00401-017-1696-8. Epub 2017 Mar 22.
7
Multimodal 7T Imaging of Thalamic Nuclei for Preclinical Deep Brain Stimulation Applications.
Front Neurosci. 2016 Jun 10;10:264. doi: 10.3389/fnins.2016.00264. eCollection 2016.
9
Contribution of metals to brain MR signal intensity: review articles.
Jpn J Radiol. 2016 Apr;34(4):258-66. doi: 10.1007/s11604-016-0532-8. Epub 2016 Mar 1.
10
Iron in Multiple Sclerosis and Its Noninvasive Imaging with Quantitative Susceptibility Mapping.
Int J Mol Sci. 2016 Jan 14;17(1):100. doi: 10.3390/ijms17010100.

本文引用的文献

2
Biophysical mechanisms of phase contrast in gradient echo MRI.
Proc Natl Acad Sci U S A. 2009 Aug 11;106(32):13558-63. doi: 10.1073/pnas.0904899106. Epub 2009 Jul 23.
3
Using magnetic field simulation to study susceptibility-related phase contrast in gradient echo MRI.
Neuroimage. 2009 Oct 15;48(1):126-37. doi: 10.1016/j.neuroimage.2009.05.093. Epub 2009 Jun 8.
7
Characterizing iron deposition in multiple sclerosis lesions using susceptibility weighted imaging.
J Magn Reson Imaging. 2009 Mar;29(3):537-44. doi: 10.1002/jmri.21676.
9
Tracing copper-thiomolybdate complexes in a prospective treatment for Wilson's disease.
Biochemistry. 2009 Feb 10;48(5):891-7. doi: 10.1021/bi801926e.
10
Iron, copper, and zinc distribution of the cerebellum.
Cerebellum. 2009 Jun;8(2):74-9. doi: 10.1007/s12311-008-0091-3. Epub 2009 Jan 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验