Suppr超能文献

动态乳腺 MRI 中病变分类的药代动力学绘图。

Pharmacokinetic mapping for lesion classification in dynamic breast MRI.

机构信息

University of Utah Department of Radiology, Salt Lake City, Utah 84132, USA.

出版信息

J Magn Reson Imaging. 2010 Jun;31(6):1371-8. doi: 10.1002/jmri.22179.

Abstract

PURPOSE

To prospectively investigate whether a rapid dynamic MRI protocol, in conjunction with pharmacokinetic modeling, could provide diagnostically useful information for discriminating biopsy-proven benign lesions from malignancies.

MATERIALS AND METHODS

Patients referred to breast biopsy based on suspicious screening findings were eligible. After anatomic imaging, patients were scanned using a dynamic protocol with complete bilateral breast coverage. Maps of pharmacokinetic parameters representing transfer constant (K(trans)), efflux rate constant (k(ep)), blood plasma volume fraction (v(p)), and extracellular extravascular volume fraction (v(e)) were averaged over lesions and used, with biopsy results, to generate receiver operating characteristic curves for linear classifiers using one, two, or three parameters.

RESULTS

Biopsy and imaging results were obtained from 93 lesions in 74 of 78 study patients. Classification based on K(trans) and k(ep) gave the greatest accuracy, with an area under the receiver operating characteristic curve of 0.915, sensitivity of 91%, and specificity of 85%, compared with values of 88% and 68%, respectively, obtained in a recent study of clinical breast MRI in a similar patient population.

CONCLUSION

Pharmacokinetic classification of breast lesions is practical on modern MRI hardware and provides significant accuracy for identification of malignancies. Sensitivity of a two-parameter linear classifier is comparable to that reported in a recent multicenter study of clinical breast MRI, while specificity is significantly higher.

摘要

目的

前瞻性研究快速动态 MRI 方案与药代动力学模型相结合是否能为鉴别经活检证实的良性病变与恶性病变提供有诊断价值的信息。

材料与方法

符合可疑筛查结果而行乳腺活检的患者符合入选条件。在进行解剖成像后,对患者进行双侧乳腺完整覆盖的动态方案扫描。将药代动力学参数图(代表转移常数(K(trans))、流出率常数(k(ep))、血浆体积分数(v(p))和细胞外细胞外体积分数(v(e)))表示的转移常数(K(trans))和流出率常数(k(ep))进行平均,用于生成基于线性分类器的受试者工作特征曲线,使用一个、两个或三个参数。

结果

78 例研究患者中的 74 例获得了活检和影像学结果。基于 K(trans)和 k(ep)的分类具有最高的准确性,受试者工作特征曲线下面积为 0.915,灵敏度为 91%,特异性为 85%,而在最近一项对类似患者人群的临床乳腺 MRI 的研究中,灵敏度分别为 88%和 68%。

结论

乳腺病变的药代动力学分类在现代 MRI 硬件上是可行的,并且为识别恶性肿瘤提供了显著的准确性。双参数线性分类器的灵敏度与最近一项临床乳腺 MRI 的多中心研究相似,而特异性则显著更高。

相似文献

1
Pharmacokinetic mapping for lesion classification in dynamic breast MRI.
J Magn Reson Imaging. 2010 Jun;31(6):1371-8. doi: 10.1002/jmri.22179.
3
Discrimination of benign and malignant breast lesions by using shutter-speed dynamic contrast-enhanced MR imaging.
Radiology. 2011 Nov;261(2):394-403. doi: 10.1148/radiol.11102413. Epub 2011 Aug 9.
6
Discrimination between benign and malignant breast lesions using volumetric quantitative dynamic contrast-enhanced MR imaging.
Eur Radiol. 2018 Mar;28(3):982-991. doi: 10.1007/s00330-017-5050-2. Epub 2017 Sep 19.
8
Separation of benign and malignant breast lesions using dynamic contrast enhanced MRI in a biopsy cohort.
J Magn Reson Imaging. 2017 May;45(5):1385-1393. doi: 10.1002/jmri.25501. Epub 2016 Oct 20.
10
Lesion type and reader experience affect the diagnostic accuracy of breast MRI: a multiple reader ROC study.
Eur J Radiol. 2015 Jan;84(1):86-91. doi: 10.1016/j.ejrad.2014.10.023. Epub 2014 Nov 14.

引用本文的文献

1
Permeability Benchmarking: Guidelines for Comparing , , and Measurements.
J Chem Inf Model. 2025 Feb 10;65(3):1067-1084. doi: 10.1021/acs.jcim.4c01815. Epub 2025 Jan 17.
3
Improved value of whole-lesion histogram analysis on DCE parametric maps for diagnosing small breast cancer (≤ 1 cm).
Eur Radiol. 2022 Mar;32(3):1634-1643. doi: 10.1007/s00330-021-08244-7. Epub 2021 Sep 9.
8
Impact of the Number of Iterations in Compressed Sensing Reconstruction on Ultrafast Dynamic Contrast-enhanced Breast MR Imaging.
Magn Reson Med Sci. 2019 Jul 16;18(3):200-207. doi: 10.2463/mrms.mp.2018-0015. Epub 2018 Nov 9.
10
Prediction of low-risk breast cancer using quantitative DCE-MRI and its pathological basis.
Oncotarget. 2017 Nov 1;8(69):114360-114370. doi: 10.18632/oncotarget.22267. eCollection 2017 Dec 26.

本文引用的文献

1
The accuracy of pharmacokinetic parameter measurement in DCE-MRI of the breast at 3 T.
Phys Med Biol. 2010 Jan 7;55(1):121-32. doi: 10.1088/0031-9155/55/1/008.
3
The magnetic resonance shutter speed discriminates vascular properties of malignant and benign breast tumors in vivo.
Proc Natl Acad Sci U S A. 2008 Nov 18;105(46):17943-8. doi: 10.1073/pnas.0711226105. Epub 2008 Nov 12.
5
Uncertainty and bias in contrast concentration measurements using spoiled gradient echo pulse sequences.
Phys Med Biol. 2008 May 7;53(9):2345-73. doi: 10.1088/0031-9155/53/9/010. Epub 2008 Apr 17.
7
Meta-analysis of MR imaging in the diagnosis of breast lesions.
Radiology. 2008 Jan;246(1):116-24. doi: 10.1148/radiol.2461061298. Epub 2007 Nov 16.
8
On the identifiability of pharmacokinetic parameters in dynamic contrast-enhanced imaging.
Magn Reson Med. 2007 Aug;58(2):425-9. doi: 10.1002/mrm.21336.
9
MRI of tumor angiogenesis.
J Magn Reson Imaging. 2007 Aug;26(2):235-49. doi: 10.1002/jmri.20991.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验