Suppr超能文献

定量成像生物标志物联盟(QIBA)关于提高多中心肿瘤试验中 DWI 和 DCE-MRI 衍生生物标志物精度的建议。

Quantitative imaging biomarkers alliance (QIBA) recommendations for improved precision of DWI and DCE-MRI derived biomarkers in multicenter oncology trials.

机构信息

Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA.

Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA.

出版信息

J Magn Reson Imaging. 2019 Jun;49(7):e101-e121. doi: 10.1002/jmri.26518. Epub 2018 Nov 19.

Abstract

Physiological properties of tumors can be measured both in vivo and noninvasively by diffusion-weighted imaging and dynamic contrast-enhanced magnetic resonance imaging. Although these techniques have been used for more than two decades to study tumor diffusion, perfusion, and/or permeability, the methods and studies on how to reduce measurement error and bias in the derived imaging metrics is still lacking in the literature. This is of paramount importance because the objective is to translate these quantitative imaging biomarkers (QIBs) into clinical trials, and ultimately in clinical practice. Standardization of the image acquisition using appropriate phantoms is the first step from a technical performance standpoint. The next step is to assess whether the imaging metrics have clinical value and meet the requirements for being a QIB as defined by the Radiological Society of North America's Quantitative Imaging Biomarkers Alliance (QIBA). The goal and mission of QIBA and the National Cancer Institute Quantitative Imaging Network (QIN) initiatives are to provide technical performance standards (QIBA profiles) and QIN tools for producing reliable QIBs for use in the clinical imaging community. Some of QIBA's development of quantitative diffusion-weighted imaging and dynamic contrast-enhanced QIB profiles has been hampered by the lack of literature for repeatability and reproducibility of the derived QIBs. The available research on this topic is scant and is not in sync with improvements or upgrades in MRI technology over the years. This review focuses on the need for QIBs in oncology applications and emphasizes the importance of the assessment of their reproducibility and repeatability. Level of Evidence: 5 Technical Efficacy Stage: 1 J. Magn. Reson. Imaging 2019;49:e101-e121.

摘要

肿瘤的生理特性可以通过扩散加权成像和动态对比增强磁共振成像在体内和非侵入性地进行测量。虽然这些技术已经被用于研究肿瘤扩散、灌注和/或通透性超过二十年,但在文献中仍然缺乏如何减少衍生成像指标测量误差和偏差的方法和研究。这一点至关重要,因为我们的目标是将这些定量成像生物标志物(QIBs)转化为临床试验,并最终转化为临床实践。从技术性能的角度来看,使用适当的体模标准化图像采集是第一步。下一步是评估成像指标是否具有临床价值,并满足北美放射学会定量成像生物标志物联盟(QIBA)定义的 QIB 要求。QIBA 和国家癌症研究所定量成像网络(QIN)计划的目标和使命是提供技术性能标准(QIBA 概况)和 QIN 工具,以生成可用于临床成像社区的可靠 QIBs。由于缺乏关于衍生 QIB 可重复性和再现性的文献,QIBA 对定量扩散加权成像和动态对比增强 QIB 概况的一些发展受到了阻碍。关于这个主题的现有研究很少,并且与多年来 MRI 技术的改进或升级不同步。这篇综述重点介绍了 QIB 在肿瘤学应用中的必要性,并强调了评估其可重复性和再现性的重要性。证据水平:5 技术功效阶段:1 J. Magn. Reson. Imaging 2019;49:e101-e121.

相似文献

4
Test-retest repeatability and reproducibility of ADC measures by breast DWI: Results from the ACRIN 6698 trial.
J Magn Reson Imaging. 2019 Jun;49(6):1617-1628. doi: 10.1002/jmri.26539. Epub 2018 Oct 22.
8
Use of diffusion kurtosis imaging and quantitative dynamic contrast-enhanced MRI for the differentiation of breast tumors.
J Magn Reson Imaging. 2018 Nov;48(5):1358-1366. doi: 10.1002/jmri.26059. Epub 2018 May 2.

引用本文的文献

2
Multiparametric magnetic resonance imaging for radiotherapy response evaluation in high-risk soft tissue sarcoma: A pilot study.
Phys Imaging Radiat Oncol. 2025 Jul 25;35:100818. doi: 10.1016/j.phro.2025.100818. eCollection 2025 Jul.
3
Multi-institution longitudinal apparent diffusion coefficient measurements in a diffusion weighted imaging phantom at room temperature.
Phys Imaging Radiat Oncol. 2025 Jul 22;35:100814. doi: 10.1016/j.phro.2025.100814. eCollection 2025 Jul.
4
3D-printable phantoms for quantitative dynamic contrast-enhanced MRI.
Magn Reson Med. 2025 Nov;94(5):1889-1899. doi: 10.1002/mrm.30595. Epub 2025 Jun 16.
5
Use of DCE-MRI in arthritis in the appendicular skeleton: a narrative review.
Skeletal Radiol. 2025 Jun 10. doi: 10.1007/s00256-025-04966-7.
6
A deep learning aided bone marrow segmentation of quantitative fat MRI for myelofibrosis patients.
Front Oncol. 2025 May 23;15:1498832. doi: 10.3389/fonc.2025.1498832. eCollection 2025.
7
Multi-model quantitative MRI of uterine cancers in precision medicine's era-a narrative review.
Insights Imaging. 2025 May 28;16(1):113. doi: 10.1186/s13244-025-01965-z.
9
A systematic review of the role of quantitative CT in the prognostication and disease monitoring of interstitial lung disease.
Eur Respir Rev. 2025 Apr 30;34(176). doi: 10.1183/16000617.0194-2024. Print 2025 Apr.

本文引用的文献

3
Quantitative imaging biomarkers: Effect of sample size and bias on confidence interval coverage.
Stat Methods Med Res. 2018 Oct;27(10):3139-3150. doi: 10.1177/0962280217693662. Epub 2017 Feb 27.
5
Multisite concordance of apparent diffusion coefficient measurements across the NCI Quantitative Imaging Network.
J Med Imaging (Bellingham). 2018 Jan;5(1):011003. doi: 10.1117/1.JMI.5.1.011003. Epub 2017 Oct 10.
7
Linearity, Bias, and Precision of Hepatic Proton Density Fat Fraction Measurements by Using MR Imaging: A Meta-Analysis.
Radiology. 2018 Feb;286(2):486-498. doi: 10.1148/radiol.2017170550. Epub 2017 Sep 11.
8
Portable perfusion phantom for quantitative DCE-MRI of the abdomen.
Med Phys. 2017 Oct;44(10):5198-5209. doi: 10.1002/mp.12466. Epub 2017 Aug 12.
10
Diffusion-weighted (DW) MRI in lung cancers: ADC test-retest repeatability.
Eur Radiol. 2017 Nov;27(11):4552-4562. doi: 10.1007/s00330-017-4828-6. Epub 2017 Apr 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验