Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6148, USA.
Mol Cell. 2010 May 28;38(4):551-62. doi: 10.1016/j.molcel.2010.03.014.
The SMN complex assembles Sm cores on snRNAs, a key step in the biogenesis of snRNPs, the spliceosome's major components. Here, using SMN complex inhibitors identified by high-throughput screening and a ribo-proteomic strategy on formaldehyde crosslinked RNPs, we dissected this pathway in cells. We show that protein synthesis inhibition impairs the SMN complex, revealing discrete SMN and Gemin subunits and accumulating an snRNA precursor (pre-snRNA)-Gemin5 intermediate. By high-throughput sequencing of this transient intermediate's RNAs, we discovered the previously undetectable precursors of all the snRNAs and identified their Gemin5-binding sites. We demonstrate that pre-snRNA 3' sequences function to enhance snRNP biogenesis. The SMN complex is also inhibited by oxidation, and we show that it stalls an inventory-complete SMN complex containing pre-snRNAs. We propose a stepwise pathway of SMN complex formation and snRNP biogenesis, highlighting Gemin5's function in delivering pre-snRNAs as substrates for Sm core assembly and processing.
SMN 复合物将 Sm 核心组装到 snRNA 上,这是 snRNP 生物发生的关键步骤,snRNP 是剪接体的主要成分。在这里,我们使用高通量筛选鉴定的 SMN 复合物抑制剂和甲醛交联 RNP 的核糖体蛋白质组学策略,在细胞中剖析了这条途径。我们表明,蛋白质合成抑制会损害 SMN 复合物,从而揭示离散的 SMN 和 Gemin 亚基,并积累 snRNA 前体(pre-snRNA)-Gemin5 中间产物。通过对这种瞬时中间产物的 RNA 进行高通量测序,我们发现了以前无法检测到的所有 snRNA 的前体,并确定了它们与 Gemin5 的结合位点。我们证明了 pre-snRNA 的 3' 序列可增强 snRNP 的生物发生。SMN 复合物也受到氧化的抑制,我们表明它会使包含 pre-snRNA 的库存完整的 SMN 复合物停滞不前。我们提出了一个逐步的 SMN 复合物形成和 snRNP 生物发生途径,突出了 Gemin5 在将 pre-snRNA 作为 Sm 核心组装和加工的底物方面的功能。