Suppr超能文献

语境线索在多连接视觉搜索中依赖于基于颜色和配置的试验间关联。

Contextual cueing in multiconjunction visual search is dependent on color- and configuration-based intertrial contingencies.

机构信息

Department Psychologie, Ludwig-Maximilians-Universität München, Leopoldstrasse 13, 80802 München, Germany.

出版信息

J Exp Psychol Hum Percept Perform. 2010 Jun;36(3):515-32. doi: 10.1037/a0017448.

Abstract

Three experiments examined memory-based guidance of visual search using a modified version of the contextual-cueing paradigm (Jiang & Chun, 2001). The target, if present, was a conjunction of color and orientation, with target (and distractor) features randomly varying across trials (multiconjunction search). Under these conditions, reaction times (RTs) were faster when all items in the display appeared at predictive ("old") relative to nonpredictive ("new") locations. However, this RT benefit was smaller compared to when only one set of items, namely that sharing the target's color (but not that in the alternative color) appeared in predictive arrangement. In all conditions, contextual cueing was reliable on both target-present and -absent trials and enhanced if a predictive display was preceded by a predictive (though differently arranged) display, rather than a nonpredictive display. These results suggest that (1) contextual cueing is confined to color subsets of items, that (2) retrieving contextual associations for one color subset of items can be impeded by associations formed within the alternative subset ("contextual interference"), and (3) that contextual cueing is modulated by intertrial priming.

摘要

三个实验使用修改后的语境线索范式(Jiang 和 Chun,2001)检验了基于记忆的视觉搜索指导。如果存在目标,则目标是颜色和方向的结合,目标(和干扰项)特征在试验中随机变化(多结合搜索)。在这些条件下,当显示中的所有项目都出现在预测(“旧”)位置相对于非预测(“新”)位置时,反应时间(RT)会更快。然而,与仅一组项目(即共享目标颜色但不在替代颜色中的项目)出现在预测排列中时相比,这种 RT 优势较小。在所有条件下,上下文线索在目标存在和不存在的试验中都是可靠的,如果预测显示之前是预测显示(尽管排列不同),而不是非预测显示,则会增强上下文线索。这些结果表明:(1)上下文线索仅限于项目的颜色子集,(2)检索一个颜色子集的上下文关联可能会受到另一个子集内形成的关联的阻碍(“上下文干扰”),(3)上下文线索受试验间启动的调节。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验