Suppr超能文献

在酿酒酵母的多个适应度组分中,有益突变的高频出现。

A high frequency of beneficial mutations across multiple fitness components in Saccharomyces cerevisiae.

机构信息

Department of Genetics, University of Georgia, Athens, Georgia 30602, USA.

出版信息

Genetics. 2010 Aug;185(4):1397-409. doi: 10.1534/genetics.110.118307. Epub 2010 Jun 1.

Abstract

Mutation-accumulation experiments are widely used to estimate parameters of spontaneous mutations affecting fitness. In many experiments only one component of fitness is measured. In a previous study involving the diploid yeast Saccharomyces cerevisiae, we measured the growth rate of 151 mutation-accumulation lines to estimate parameters of mutation. We found that an unexpectedly high frequency of fitness-altering mutations was beneficial. Here, we build upon our previous work by examining sporulation efficiency, spore viability, and haploid growth rate and find that these components of fitness also show a high frequency of beneficial mutations. We also examine whether mutation-acycumulation (MA) lines show any evidence of pleiotropy among accumulated mutations and find that, for most, there is none. However, MA lines that have zero fitness (i.e., lethality) for any one fitness component do show evidence for pleiotropy among accumulated mutations. We also report estimates of other parameters of mutation based on each component of fitness.

摘要

突变积累实验被广泛用于估计影响适应性的自发突变的参数。在许多实验中,只测量了适应性的一个组成部分。在之前涉及二倍体酵母酿酒酵母的一项研究中,我们测量了 151 条突变积累系的生长速率来估计突变参数。我们发现,适应性改变突变的频率出乎意料地高是有益的。在这里,我们在前一项工作的基础上,研究了减数分裂效率、孢子活力和单倍体生长速率,发现这些适应性组成部分也显示出高频率的有益突变。我们还检查了突变积累(MA)系在积累的突变中是否存在多效性的证据,发现大多数情况下没有。然而,对于任何一个适应性组成部分都没有适应性(即致死性)的 MA 系确实显示出积累的突变之间存在多效性的证据。我们还根据每个适应性组成部分报告了其他突变参数的估计值。

相似文献

1
A high frequency of beneficial mutations across multiple fitness components in Saccharomyces cerevisiae.
Genetics. 2010 Aug;185(4):1397-409. doi: 10.1534/genetics.110.118307. Epub 2010 Jun 1.
2
Spontaneous mutations in diploid Saccharomyces cerevisiae: another thousand cell generations.
Genet Res (Camb). 2008 Jun;90(3):229-41. doi: 10.1017/S0016672308009324.
3
Accelerating Mutational Load Is Not Due to Synergistic Epistasis or Mutator Alleles in Mutation Accumulation Lines of Yeast.
Genetics. 2016 Feb;202(2):751-63. doi: 10.1534/genetics.115.182774. Epub 2015 Nov 23.
4
Diploidy and the selective advantage for sexual reproduction in unicellular organisms.
Theory Biosci. 2009 Nov;128(4):249-85. doi: 10.1007/s12064-009-0077-9. Epub 2009 Nov 10.
5
Haploids adapt faster than diploids across a range of environments.
J Evol Biol. 2011 Mar;24(3):531-40. doi: 10.1111/j.1420-9101.2010.02188.x. Epub 2010 Dec 16.
7
Spontaneous mutations in diploid Saccharomyces cerevisiae: more beneficial than expected.
Genetics. 2004 Dec;168(4):1817-25. doi: 10.1534/genetics.104.033761.
8
The baker's yeast diploid genome is remarkably stable in vegetative growth and meiosis.
PLoS Genet. 2010 Sep 9;6(9):e1001109. doi: 10.1371/journal.pgen.1001109.
9
Effect of Salt Stress on Mutation and Genetic Architecture for Fitness Components in .
G3 (Bethesda). 2020 Oct 5;10(10):3831-3842. doi: 10.1534/g3.120.401593.
10
Population studies in microorganisms. I. Evolution of diploidy in Saccharomyces cerevisiae.
Genetics. 1974 Feb;76(2):327-38. doi: 10.1093/genetics/76.2.327.

引用本文的文献

1
Spontaneous single-nucleotide substitutions and microsatellite mutations have distinct distributions of fitness effects.
PLoS Biol. 2024 Jul 1;22(7):e3002698. doi: 10.1371/journal.pbio.3002698. eCollection 2024 Jul.
2
Shifts in mutation spectra enhance access to beneficial mutations.
Proc Natl Acad Sci U S A. 2023 May 30;120(22):e2207355120. doi: 10.1073/pnas.2207355120. Epub 2023 May 22.
3
Are mutations usually deleterious? A perspective on the fitness effects of mutation accumulation.
Evol Ecol. 2022 Oct;36(5):753-766. doi: 10.1007/s10682-022-10187-4. Epub 2022 Jun 21.
6
Fitness effects of spontaneous mutations in a warming world.
Evolution. 2021 Jun;75(6):1513-1524. doi: 10.1111/evo.14208. Epub 2021 Mar 24.
7
Effect of Salt Stress on Mutation and Genetic Architecture for Fitness Components in .
G3 (Bethesda). 2020 Oct 5;10(10):3831-3842. doi: 10.1534/g3.120.401593.
8
The fitness cost of mismatch repair mutators in Saccharomyces cerevisiae: partitioning the mutational load.
Heredity (Edinb). 2020 Jan;124(1):50-61. doi: 10.1038/s41437-019-0267-2. Epub 2019 Sep 12.
9
Adaptation by Loss of Heterozygosity in Clones Under Divergent Selection.
Genetics. 2019 Oct;213(2):665-683. doi: 10.1534/genetics.119.302411. Epub 2019 Aug 1.
10
The genome-wide rate and spectrum of spontaneous mutations differ between haploid and diploid yeast.
Proc Natl Acad Sci U S A. 2018 May 29;115(22):E5046-E5055. doi: 10.1073/pnas.1801040115. Epub 2018 May 14.

本文引用的文献

1
PERSPECTIVE: SPONTANEOUS DELETERIOUS MUTATION.
Evolution. 1999 Jun;53(3):645-663. doi: 10.1111/j.1558-5646.1999.tb05361.x.
2
GENETIC LOAD OF THE YEAST SACCHAROMYCES CEREVISIAE UNDER DIVERSE ENVIRONMENTAL CONDITIONS.
Evolution. 1999 Dec;53(6):1966-1971. doi: 10.1111/j.1558-5646.1999.tb04577.x.
3
Spontaneous mutations in diploid Saccharomyces cerevisiae: another thousand cell generations.
Genet Res (Camb). 2008 Jun;90(3):229-41. doi: 10.1017/S0016672308009324.
4
A genome-wide view of the spectrum of spontaneous mutations in yeast.
Proc Natl Acad Sci U S A. 2008 Jul 8;105(27):9272-7. doi: 10.1073/pnas.0803466105. Epub 2008 Jun 26.
6
Pleiotropic scaling of gene effects and the 'cost of complexity'.
Nature. 2008 Mar 27;452(7186):470-2. doi: 10.1038/nature06756.
8
Adaptation from standing genetic variation.
Trends Ecol Evol. 2008 Jan;23(1):38-44. doi: 10.1016/j.tree.2007.09.008. Epub 2007 Nov 14.
9
Adaptive mutations in bacteria: high rate and small effects.
Science. 2007 Aug 10;317(5839):813-5. doi: 10.1126/science.1142284.
10
Adaptation in sexuals vs. asexuals: clonal interference and the Fisher-Muller model.
Genetics. 2005 Nov;171(3):1377-86. doi: 10.1534/genetics.105.045252. Epub 2005 Jul 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验