Jasmin Jean-Nicolas, Lenormand Thomas
Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), UMR 5175, Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier-Université Paul-Valéry Montpellier-École Practique des Hautes Études (EPHE), 34293 Montpellier, Cedex 5, France
Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), UMR 5175, Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier-Université Paul-Valéry Montpellier-École Practique des Hautes Études (EPHE), 34293 Montpellier, Cedex 5, France.
Genetics. 2016 Feb;202(2):751-63. doi: 10.1534/genetics.115.182774. Epub 2015 Nov 23.
Much of our knowledge about the fitness effects of new mutations has been gained from mutation accumulation (MA) experiments. Yet the fitness effect of single mutations is rarely measured in MA experiments. This raises several issues, notably for inferring epistasis for fitness. The acceleration of fitness decline in MA lines has been taken as evidence for synergistic epistasis, but establishing the role of epistasis requires measuring the fitness of genotypes carrying known numbers of mutations. Otherwise, accelerating fitness loss could be explained by increased genetic mutation rates. Here we segregated mutations accumulated over 4800 generations in haploid and diploid MA lines of the yeast Saccharomyces cerevisiae. We found no correspondence between an accelerated fitness decline and synergistic epistasis among deleterious mutations in haploid lines. Pairs of mutations showed no overall epistasis. Furthermore, several lines of evidence indicate that genetic mutation rates did not increase in the MA lines. Crucially, segregant fitness analyses revealed that MA accelerated in both haploid and diploid lines, even though the fitness of diploid lines was nearly constant during the MA experiment. This suggests that the accelerated fitness decline in haploids was caused by cryptic environmental factors that increased mutation rates in all lines during the last third of the lines' transfers. In addition, we provide new estimates of deleterious mutation rates, including lethal mutations, and highlight that nearly all the mutational load we observed was due to one or two mutations having a large effect on fitness.
我们关于新突变对适合度影响的许多知识都来自于突变积累(MA)实验。然而,在MA实验中很少测量单个突变的适合度效应。这引发了几个问题,特别是在推断适合度的上位性方面。MA品系中适合度下降的加速被视为协同上位性的证据,但确定上位性的作用需要测量携带已知突变数目的基因型的适合度。否则,适合度损失的加速可能是由遗传突变率增加所解释的。在这里,我们分离了在酿酒酵母的单倍体和二倍体MA品系中积累了4800代的突变。我们发现单倍体品系中有害突变之间适合度下降的加速与协同上位性之间没有对应关系。突变对之间没有总体上位性。此外,几条证据表明MA品系中的遗传突变率没有增加。至关重要的是,分离群体适合度分析表明,单倍体和二倍体品系中的MA都加速了,尽管二倍体品系的适合度在MA实验期间几乎保持不变。这表明单倍体中适合度下降的加速是由隐蔽的环境因素引起的,这些因素在品系转移的最后三分之一期间增加了所有品系中的突变率。此外,我们提供了有害突变率的新估计值,包括致死突变,并强调我们观察到的几乎所有突变负荷都归因于一两个对适合度有很大影响的突变。