Physics of Complex Fluids, Department of Science & Technology, IMPACT and MESA+ Institute, University of Twente, P. O. Box 217, 7500AE, Enschede, The Netherlands.
Lab Chip. 2010 Jun 21;10(12):1550-6. doi: 10.1039/c001524e. Epub 2010 Mar 18.
Electrowetting (EW) is widely used in digital microfluidics for the manipulation of drops sandwiched between two parallel plates. In contrast, demonstrations of closed microfluidic channels enhanced with EW functionality are scarce. Here, we report a simple, low-cost method to construct such microchannels enclosed between two glass plates, each of which comprises electrodes and insulating layers. Our method uses soft imprint lithography with thiolene precursors to design the channel geometry. UV exposure is used to seal the chips permanently and a silanization treatment renders all inner channel surfaces hydrophobic. Compared to earlier polydimethylsiloxane-based designs, this method allows us to make microchannels with smaller dimensions (down to 10 microns), lower aspect ratios (down to height/length=1/10), and symmetric electrodes both on the top and the bottom of the channel. We demonstrate the new capabilities with two examples: (i) EW-enhanced drop generation in a flow focusing geometry allows precise and continuous control on drop diameter in the range approximately 1-15 microns while maintaining monodispersity; (ii) EW allows tuning of the excess water pressure needed to displace oil in a microchannel, leading to spontaneous imbibition at EW number eta>0.89.
电润湿(EW)在用于操纵夹在两个平行板之间的液滴的数字微流控中得到了广泛应用。相比之下,具有 EW 功能的封闭微流道的演示很少见。在这里,我们报告了一种简单、低成本的方法来构建这种夹在两块玻璃之间的微通道,每块玻璃都包含电极和绝缘层。我们的方法使用带有硫醇烯前体的软压印光刻技术来设计通道几何形状。UV 曝光可将芯片永久密封,硅烷化处理使所有内部通道表面疏水。与早期的基于聚二甲基硅氧烷的设计相比,这种方法允许我们制造具有更小尺寸(低至 10 微米)、更低纵横比(低至高度/长度=1/10)和对称电极的微通道,电极位于通道的顶部和底部。我们通过两个示例展示了新的功能:(i)在流动聚焦几何形状中增强的 EW 液滴生成允许在大约 1-15 微米的范围内精确和连续地控制液滴直径,同时保持单分散性;(ii)EW 允许调整在微通道中置换油所需的过剩水压力,导致在 EW 数 eta>0.89 时自发吸入。