Department of Biology, Washington University, St. Louis, Missouri 63130, USA.
Biochemistry. 2010 Jul 6;49(26):5455-63. doi: 10.1021/bi1006805.
The Fenna-Matthews-Olson light-harvesting antenna (FMO) protein has been a model system for understanding pigment-protein interactions in the energy transfer process in photosynthesis. All previous studies have utilized wild-type FMO proteins from several species. Here we report the purification and characterization of the first FMO protein variant generated via replacement of the esterifying alcohol at the C-17 propionate residue of bacteriochlorophyll (BChl) a, phytol, with geranylgeraniol, which possesses three more double bonds. The FMO protein still assembles with the modified pigment, but both the whole cell absorption and the biochemical purification indicate that the mutant cells contain a much less mature FMO protein. The gene expression was checked using qRT-PCR, and none of the genes encoding BChl a-binding proteins are strongly regulated at the transcriptional level. The smaller amount of the FMO protein in the mutant cell is probably due to the degradation of the apo-FMO protein at different stages after it does not bind the normal pigment. The absorption, fluorescence, and CD spectra of the purified FMO variant protein are similar to those of the wild-type FMO protein except the conformations of most pigments are more heterogeneous, which broadens the spectral bands. Interestingly, the lowest-energy pigment binding site seems to be unchanged and is the only peak that can be well resolved in 77 K absorption spectra. The excited-state lifetime of the variant FMO protein is unchanged from that of the wild type and shows a temperature-dependent modulation similar to that of the wild type. The variant FMO protein is less thermally stable than the wild type. The assembly of the FMO protein and also the implications of the decreased FMO/chlorosome stoichiometry are discussed in terms of the topology of these two antennas on the cytoplasmic membrane.
芬纳-马修斯-奥尔森(Fenna-Matthews-Olson)光捕获天线(FMO)蛋白一直是理解光合作用中能量转移过程中色素-蛋白相互作用的模型系统。所有以前的研究都利用了来自几个物种的野生型 FMO 蛋白。在这里,我们报告了第一个通过取代细菌叶绿素(BChl)a、植醇的 C-17 丙酸酯残基上的酯化醇,并用具有三个额外双键的香叶基香叶醇来生成的 FMO 蛋白变体的纯化和表征。FMO 蛋白仍然与修饰的色素组装,但整个细胞吸收和生化纯化都表明突变细胞中含有成熟程度较低的 FMO 蛋白。使用 qRT-PCR 检查基因表达,并且没有一个编码 BChl a 结合蛋白的基因在转录水平上受到强烈调控。突变细胞中 FMO 蛋白的数量较少可能是由于在不结合正常色素后,apo-FMO 蛋白在不同阶段的降解所致。突变体细胞中 FMO 变体蛋白的量较少可能是由于在不结合正常色素后,apo-FMO 蛋白在不同阶段的降解所致。突变体细胞中 FMO 变体蛋白的量较少可能是由于在不结合正常色素后,apo-FMO 蛋白在不同阶段的降解所致。除了大多数色素的构象更加异质,从而拓宽了光谱带外,纯化的 FMO 变体蛋白的吸收、荧光和 CD 光谱与野生型 FMO 蛋白相似。有趣的是,最低能量的色素结合位点似乎没有改变,并且是在 77 K 吸收光谱中可以很好分辨的唯一峰。变体 FMO 蛋白的激发态寿命与野生型相同,并且表现出与野生型相似的温度依赖性调制。变体 FMO 蛋白的热稳定性低于野生型。根据这两种天线在细胞质膜上的拓扑结构,讨论了 FMO 蛋白的组装以及 FMO/叶绿素体比例降低的影响。