Wen Jianzhong, Tsukatani Yusuke, Cui Weidong, Zhang Hao, Gross Michael L, Bryant Donald A, Blankenship Robert E
Department of Biology, Washington University in St. Louis, St. Louis MO 63130, USA.
Biochim Biophys Acta. 2011 Jan;1807(1):157-64. doi: 10.1016/j.bbabio.2010.09.008. Epub 2010 Sep 25.
The Fenna-Matthews-Olson protein (FMO) binds seven or eight bacteriochlorophyll a (BChl a) molecules and is an important model antenna system for understanding pigment-protein interactions and mechanistic aspects of photosynthetic light harvesting. FMO proteins of green sulfur bacteria (Chlorobiales) have been extensively studied using a wide range of spectroscopic and theoretical approaches because of their stability, the spectral resolution of their pigments, their water-soluble nature, and the availability of high-resolution structural data. We obtained new structural and spectroscopic insights by studying the FMO protein from the recently discovered, aerobic phototrophic acidobacterium, Candidatus Chloracidobacterium thermophilum. Native C. thermophilum FMO is a trimer according to both analytical gel filtration and native-electrospray mass spectrometry. Furthermore, the mass of intact FMO trimer is consistent with the presence of 21-24 BChl a in each. Homology modeling of the C. thermophilum FMO was performed by using the structure of the FMO protein from Chlorobaculum tepidum as a template. C. thermophilum FMO differs from C. tepidum FMO in two distinct regions: the baseplate, CsmA-binding region and a region that is proposed to bind the reaction center subunit, PscA. C. thermophilum FMO has two fluorescence emission peaks at room temperature but only one at 77K. Temperature-dependent fluorescence spectroscopy showed that the two room-temperature emission peaks result from two excited-state BChl a populations that have identical fluorescence lifetimes. Modeling of the data suggests that the two populations contain 1-2 BChl and 5-6 BChl a molecules and that thermal equilibrium effects modulate the relative population of the two emitting states.
费纳-马修斯-奥尔森蛋白(FMO)能结合7个或8个细菌叶绿素a(BChl a)分子,是理解色素-蛋白质相互作用以及光合光捕获机制方面的重要模型天线系统。由于绿硫细菌(绿菌目)的FMO蛋白具有稳定性、色素的光谱分辨率、水溶性以及高分辨率结构数据的可获得性,因此已使用多种光谱学和理论方法对其进行了广泛研究。通过研究最近发现的嗜热需氧光养酸杆菌“嗜热嗜酸绿菌”(Candidatus Chloracidobacterium thermophilum)中的FMO蛋白,我们获得了新的结构和光谱学见解。根据分析凝胶过滤和天然电喷雾质谱分析,天然的嗜热嗜酸绿菌FMO是三聚体。此外,完整FMO三聚体的质量与每个三聚体中存在21 - 24个BChl a一致。以嗜热栖热绿菌(Chlorobaculum tepidum)的FMO蛋白结构为模板,对嗜热嗜酸绿菌FMO进行了同源建模。嗜热嗜酸绿菌FMO与嗜热栖热绿菌FMO在两个不同区域存在差异:基板、CsmA结合区域以及一个被认为与反应中心亚基PscA结合的区域。嗜热嗜酸绿菌FMO在室温下有两个荧光发射峰,但在77K时只有一个。温度依赖性荧光光谱表明,两个室温发射峰来自具有相同荧光寿命的两个激发态BChl a群体。数据建模表明,这两个群体分别包含1 - 2个BChl和5 - 6个BChl a分子,并且热平衡效应调节了两个发射态的相对群体。