Suppr超能文献

嗜热嗜酸绿菌(Candidatus Chloracidobacterium thermophilum)中FMO天线蛋白的结构模型和光谱特征

Structural model and spectroscopic characteristics of the FMO antenna protein from the aerobic chlorophototroph, Candidatus Chloracidobacterium thermophilum.

作者信息

Wen Jianzhong, Tsukatani Yusuke, Cui Weidong, Zhang Hao, Gross Michael L, Bryant Donald A, Blankenship Robert E

机构信息

Department of Biology, Washington University in St. Louis, St. Louis MO 63130, USA.

出版信息

Biochim Biophys Acta. 2011 Jan;1807(1):157-64. doi: 10.1016/j.bbabio.2010.09.008. Epub 2010 Sep 25.

Abstract

The Fenna-Matthews-Olson protein (FMO) binds seven or eight bacteriochlorophyll a (BChl a) molecules and is an important model antenna system for understanding pigment-protein interactions and mechanistic aspects of photosynthetic light harvesting. FMO proteins of green sulfur bacteria (Chlorobiales) have been extensively studied using a wide range of spectroscopic and theoretical approaches because of their stability, the spectral resolution of their pigments, their water-soluble nature, and the availability of high-resolution structural data. We obtained new structural and spectroscopic insights by studying the FMO protein from the recently discovered, aerobic phototrophic acidobacterium, Candidatus Chloracidobacterium thermophilum. Native C. thermophilum FMO is a trimer according to both analytical gel filtration and native-electrospray mass spectrometry. Furthermore, the mass of intact FMO trimer is consistent with the presence of 21-24 BChl a in each. Homology modeling of the C. thermophilum FMO was performed by using the structure of the FMO protein from Chlorobaculum tepidum as a template. C. thermophilum FMO differs from C. tepidum FMO in two distinct regions: the baseplate, CsmA-binding region and a region that is proposed to bind the reaction center subunit, PscA. C. thermophilum FMO has two fluorescence emission peaks at room temperature but only one at 77K. Temperature-dependent fluorescence spectroscopy showed that the two room-temperature emission peaks result from two excited-state BChl a populations that have identical fluorescence lifetimes. Modeling of the data suggests that the two populations contain 1-2 BChl and 5-6 BChl a molecules and that thermal equilibrium effects modulate the relative population of the two emitting states.

摘要

费纳-马修斯-奥尔森蛋白(FMO)能结合7个或8个细菌叶绿素a(BChl a)分子,是理解色素-蛋白质相互作用以及光合光捕获机制方面的重要模型天线系统。由于绿硫细菌(绿菌目)的FMO蛋白具有稳定性、色素的光谱分辨率、水溶性以及高分辨率结构数据的可获得性,因此已使用多种光谱学和理论方法对其进行了广泛研究。通过研究最近发现的嗜热需氧光养酸杆菌“嗜热嗜酸绿菌”(Candidatus Chloracidobacterium thermophilum)中的FMO蛋白,我们获得了新的结构和光谱学见解。根据分析凝胶过滤和天然电喷雾质谱分析,天然的嗜热嗜酸绿菌FMO是三聚体。此外,完整FMO三聚体的质量与每个三聚体中存在21 - 24个BChl a一致。以嗜热栖热绿菌(Chlorobaculum tepidum)的FMO蛋白结构为模板,对嗜热嗜酸绿菌FMO进行了同源建模。嗜热嗜酸绿菌FMO与嗜热栖热绿菌FMO在两个不同区域存在差异:基板、CsmA结合区域以及一个被认为与反应中心亚基PscA结合的区域。嗜热嗜酸绿菌FMO在室温下有两个荧光发射峰,但在77K时只有一个。温度依赖性荧光光谱表明,两个室温发射峰来自具有相同荧光寿命的两个激发态BChl a群体。数据建模表明,这两个群体分别包含1 - 2个BChl和5 - 6个BChl a分子,并且热平衡效应调节了两个发射态的相对群体。

相似文献

2
Characterization of the FMO protein from the aerobic chlorophototroph, Candidatus Chloracidobacterium thermophilum.
Photosynth Res. 2010 Jun;104(2-3):201-9. doi: 10.1007/s11120-009-9517-0. Epub 2010 Jan 22.
3
Membrane orientation of the FMO antenna protein from Chlorobaculum tepidum as determined by mass spectrometry-based footprinting.
Proc Natl Acad Sci U S A. 2009 Apr 14;106(15):6134-9. doi: 10.1073/pnas.0901691106. Epub 2009 Apr 1.
6
Energy landscape of the intact and destabilized FMO antennas from C. tepidum and the L122Q mutant: Low temperature spectroscopy and modeling study.
Biochim Biophys Acta Bioenerg. 2018 Mar;1859(3):165-173. doi: 10.1016/j.bbabio.2017.11.008. Epub 2017 Dec 1.
8
Alternative Excitonic Structure in the Baseplate (BChl a-CsmA Complex) of the Chlorosome from Chlorobaculum tepidum.
J Phys Chem Lett. 2015 Jul 16;6(14):2702-7. doi: 10.1021/acs.jpclett.5b01074. Epub 2015 Jun 26.
9
Predictive First-Principles Modeling of a Photosynthetic Antenna Protein: The Fenna-Matthews-Olson Complex.
J Phys Chem Lett. 2020 Mar 5;11(5):1636-1643. doi: 10.1021/acs.jpclett.9b03486. Epub 2020 Feb 14.

引用本文的文献

1
Phototrophic Fe(II) oxidation benefits from light/dark cycles.
Environ Microbiol Rep. 2024 Apr;16(2):e13239. doi: 10.1111/1758-2229.13239.
2
Photon Energy-Dependent Ultrafast Exciton Transfer in Chlorosomes of and the Role of Supramolecular Dynamics.
J Phys Chem B. 2023 Sep 7;127(35):7581-7589. doi: 10.1021/acs.jpcb.3c05282. Epub 2023 Aug 23.
4
Quantum-Classical Approach for Calculations of Absorption and Fluorescence: Principles and Applications.
J Chem Theory Comput. 2021 Nov 9;17(11):7157-7168. doi: 10.1021/acs.jctc.1c00777. Epub 2021 Oct 7.
5
Genomic and Phenotypic Characterization of Isolates Provides Evidence for Multiple Species.
Front Microbiol. 2021 Jun 17;12:704168. doi: 10.3389/fmicb.2021.704168. eCollection 2021.
7
The influence of quaternary structure on the stability of Fenna-Matthews-Olson (FMO) antenna complexes.
Photosynth Res. 2019 Apr;140(1):39-49. doi: 10.1007/s11120-018-0591-z. Epub 2018 Oct 12.
8
N photo-CIDNP MAS NMR analysis of reaction centers of Chloracidobacterium thermophilum.
Photosynth Res. 2018 Aug;137(2):295-305. doi: 10.1007/s11120-018-0504-1. Epub 2018 Mar 30.
9
Absence of Selection for Quantum Coherence in the Fenna-Matthews-Olson Complex: A Combined Evolutionary and Excitonic Study.
ACS Cent Sci. 2017 Oct 25;3(10):1086-1095. doi: 10.1021/acscentsci.7b00269. Epub 2017 Aug 30.

本文引用的文献

1
CPHmodels-3.0--remote homology modeling using structure-guided sequence profiles.
Nucleic Acids Res. 2010 Jul;38(Web Server issue):W576-81. doi: 10.1093/nar/gkq535. Epub 2010 Jun 11.
3
Improving photosynthetic efficiency for greater yield.
Annu Rev Plant Biol. 2010;61:235-61. doi: 10.1146/annurev-arplant-042809-112206.
4
Biological hydrogen production: prospects and challenges.
Trends Biotechnol. 2010 May;28(5):262-71. doi: 10.1016/j.tibtech.2010.01.007. Epub 2010 Feb 26.
5
How far can we go with structural mass spectrometry of protein complexes?
J Am Soc Mass Spectrom. 2010 Apr;21(4):487-500. doi: 10.1016/j.jasms.2009.12.017. Epub 2010 Jan 4.
6
Current limitations in native mass spectrometry based structural biology.
J Am Soc Mass Spectrom. 2010 Jun;21(6):971-8. doi: 10.1016/j.jasms.2009.12.010. Epub 2010 Jan 4.
7
Characterization of the FMO protein from the aerobic chlorophototroph, Candidatus Chloracidobacterium thermophilum.
Photosynth Res. 2010 Jun;104(2-3):201-9. doi: 10.1007/s11120-009-9517-0. Epub 2010 Jan 22.
8
A model of the protein-pigment baseplate complex in chlorosomes of photosynthetic green bacteria.
Photosynth Res. 2010 Jun;104(2-3):233-43. doi: 10.1007/s11120-009-9519-y. Epub 2010 Jan 14.
10
Structure of chlorosomes from the green filamentous bacterium Chloroflexus aurantiacus.
J Bacteriol. 2009 Nov;191(21):6701-8. doi: 10.1128/JB.00690-09. Epub 2009 Aug 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验