Biophysical Chemistry, Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, Nijenborgh 4, Groningen, The Netherlands.
Photosynth Res. 2010 Jun;104(2-3):245-55. doi: 10.1007/s11120-010-9533-0. Epub 2010 Feb 4.
Three phyla of bacteria include phototrophs that contain unique antenna systems, chlorosomes, as the principal light-harvesting apparatus. Chlorosomes are the largest known supramolecular antenna systems and contain hundreds of thousands of BChl c/d/e molecules enclosed by a single membrane leaflet and a baseplate. The BChl pigments are organized via self-assembly and do not require proteins to provide a scaffold for efficient light harvesting. Their excitation energy flows via a small protein, CsmA embedded in the baseplate to the photosynthetic reaction centres. Chlorosomes allow for photosynthesis at very low light intensities by ultra-rapid transfer of excitations to reaction centres and enable organisms with chlorosomes to live at extraordinarily low light intensities under which no other phototrophic organisms can grow. This article reviews several aspects of chlorosomes: the supramolecular and molecular organizations and the light-harvesting and spectroscopic properties. In addition, it provides some novel information about the organization of the baseplate.
有三个细菌门包括含有独特天线系统的光养生物,即叶绿素作为主要的光收集装置。叶绿素是已知最大的超分子天线系统,包含数十万的 BChl c/d/e 分子,被一个单一的膜叶和一个基板包围。BChl 色素通过自组装组织起来,不需要蛋白质为有效的光收集提供支架。它们的激发能量通过嵌入在基板中的一个小蛋白 CsmA 流动到光合作用反应中心。叶绿素允许在非常低的光强度下进行光合作用,通过超快的激发转移到反应中心,使具有叶绿素的生物能够在极低的光强度下生存,而没有其他光养生物能够在这种光强度下生长。本文综述了叶绿素几个方面:超分子和分子组织以及光捕获和光谱特性。此外,它还提供了关于基板组织的一些新信息。