Program in Integrative Cardiac Metabolism, Center for Cardiovascular Research, University of Illinois at Chicago College of Medicine, Chicago, IL 60612, USA.
Circ Res. 2010 Jul 23;107(2):233-41. doi: 10.1161/CIRCRESAHA.110.221713. Epub 2010 Jun 3.
Long chain fatty acids (LCFAs) are the preferred substrate for energy provision in hearts. However, the contribution of endogenous triacylglyceride (TAG) turnover to LCFA oxidation and the overall dependence of mitochondrial oxidation on endogenous lipid is largely unstudied.
We sought to determine the role of TAG turnover in supporting LCFA oxidation and the influence of the lipid-activated nuclear receptor, proliferator-activated receptor (PPAR)alpha, on this balance.
Palmitoyl turnover within TAG and palmitate oxidation rates were quantified in isolated hearts, from normal mice (nontransgenic) and mice with cardiac-specific overexpression of PPARalpha (MHC-PPARalpha). Turnover of palmitoyl units within TAG, and thus palmitoyl-coenzyme A recycling, in nontransgenic (4.5+/-2.3 micromol/min per gram dry weight) was 3.75-fold faster than palmitate oxidation (1.2+/-0.4). This high rate of palmitoyl unit turnover indicates preferential oxidation of palmitoyl units derived from TAG in normal hearts. PPARalpha overexpression augmented TAG turnover 3-fold over nontransgenic hearts, despite similar fractions of acetyl-coenzyme A synthesis from palmitate and oxygen use at the same workload. Palmitoyl turnover within TAG of MHC-PPARalpha hearts (16.2+/-2.9, P<0.05) was 12.5-fold faster than oxidation (1.3+/-0.2). Elevated TAG turnover in MHC-PPARalpha correlated with increased mRNA for enzymes involved in both TAG synthesis, Gpam (glycerol-3-phosphate acyltransferase, mitochondrial), Dgat1 (diacylglycerol acetyltransferase 1), and Agpat3 (1-acylglycerol-3-phospate O-acyltransferase 3), and lipolysis, Pnliprp1 (pancreatic lipase related protein 1).
The role of endogenous TAG in supporting beta-oxidation in the normal heart is much more dynamic than previously thought, and lipolysis provides the bulk of LCFA for oxidation. Accelerated palmitoyl turnover in TAG, attributable to chronic PPARalpha activation, results in near requisite oxidation of LCFAs from TAG.
长链脂肪酸(LCFAs)是心脏提供能量的首选底物。然而,内源性三酰基甘油(TAG)周转对 LCFA 氧化的贡献以及线粒体氧化对内源性脂质的整体依赖性在很大程度上尚未得到研究。
我们旨在确定 TAG 周转在支持 LCFA 氧化中的作用,以及脂质激活的核受体过氧化物酶体增殖物激活受体(PPAR)α对这种平衡的影响。
在分离的心脏中定量测定了正常小鼠(非转基因)和心脏特异性过表达 PPARα(MHC-PPARα)的小鼠中的棕榈酰基在 TAG 内的周转率和棕榈酸氧化速率。非转基因小鼠(4.5+/-2.3 微摩尔/分钟/克干重)中 TAG 内棕榈酰基单位的周转率,因此棕榈酰辅酶 A 的循环,比棕榈酸氧化快 3.75 倍(1.2+/-0.4)。这种高的棕榈酰基单位周转率表明在正常心脏中优先氧化来自 TAG 的棕榈酰基单位。尽管在相同的工作量下,乙酰辅酶 A 合成和氧的使用有相似的分数,但 PPARα 的过表达使 TAG 周转率增加了 3 倍。MHC-PPARα 心脏中 TAG 内的棕榈酰基周转率(16.2+/-2.9,P<0.05)比氧化快 12.5 倍(1.3+/-0.2)。MHC-PPARα 中升高的 TAG 周转率与参与 TAG 合成的酶的 mRNA 增加相关,包括 Gpam(甘油-3-磷酸酰基转移酶,线粒体)、Dgat1(二酰基甘油乙酰转移酶 1)和 Agpat3(1-酰基甘油-3-磷酸 O-酰基转移酶 3),以及脂肪酶,Pnliprp1(胰脂肪酶相关蛋白 1)。
内源性 TAG 在正常心脏中支持β氧化的作用比以前想象的要活跃得多,脂肪酶提供了大部分用于氧化的 LCFA。TAG 中棕榈酰基的周转率加速,归因于慢性 PPARα 激活,导致来自 TAG 的 LCFAs 几乎必需氧化。