Cheung K F, Atlas L E, Marks Ii R J
Appl Opt. 1987 Nov 15;26(22):4808-13. doi: 10.1364/AO.26.004808.
The performance of Hopfield's neural net operating in synchronous and asynchronous modes is contrasted. Two interconnect matrices are considered: (1) the original Hopfield interconnect matrix; (2) the original Hopfield interconnect matrix with self-neural feedback. Specific attention is focused on techniques to maximize convergence rates and avoid steady-state oscillation. We identify two oscillation modes. Vertical oscillation occurs when the net's energy changes during each iteration. A neural net operated asynchronously cannot oscillate vertically. Synchronous operation, on the other hand, can change a net's energy either positively or negatively and vertical oscillation can occur. Horizontal oscillation occurs when the net alternates between two or more states of the same energy. Certain horizontal oscillations can be avoided by adopting appropriate thresholding rules. We demonstrate, for example, that when (1) the states of neurons with an input sum of zero are assigned the complement of their previous state, (2) the net is operated asynchronously, and (3) nonzero neural autoconnects are allowed, the net will not oscillate either vertically or horizontally.
对比了以同步和异步模式运行的霍普菲尔德神经网络的性能。考虑了两种互连矩阵:(1) 原始的霍普菲尔德互连矩阵;(2) 带有自神经反馈的原始霍普菲尔德互连矩阵。特别关注了最大化收敛速率和避免稳态振荡的技术。我们识别出两种振荡模式。当网络能量在每次迭代期间发生变化时,会出现垂直振荡。以异步方式运行的神经网络不会发生垂直振荡。另一方面,同步操作可以使网络能量正向或负向变化,并且可能发生垂直振荡。当网络在具有相同能量的两个或更多状态之间交替时,会出现水平振荡。通过采用适当的阈值规则,可以避免某些水平振荡。例如,我们证明,当(1) 将输入总和为零的神经元状态分配为其先前状态的补码,(2) 网络以异步方式运行,以及(3) 允许非零神经自连接时,网络将不会发生垂直或水平振荡。