Lalanne P, Chavel P, Taboury J
Appl Opt. 1989 Jan 15;28(2):377-85. doi: 10.1364/AO.28.000377.
The Hopfield neural network model is described in terms of inner product, i.e., as a matched filtering step followed by a pattern synthesis step. Optical implementation by two cascaded coherent filtering setups with holographic matched filters is described. Suitable encoding of information in the form of bipolar (positive or negative) amplitudes in one hologram and of non-negative amplitudes in the other allows one to deal only with non-negative quantities in the input and output planes, thereby avoiding use of multiple channels and coherent detection. The performance of this scheme is analytically evaluated. The above coding can moreover be adapted to the cases of nonzero average memorized states and to the higher-order models associated to Hopfield's algorithm. Numerical simulations and experimental results are presented to illustrate the analysis.
霍普菲尔德神经网络模型是根据内积来描述的,即作为一个匹配滤波步骤,随后是一个模式合成步骤。文中描述了通过两个带有全息匹配滤波器的级联相干滤波装置进行光学实现。在一个全息图中以双极(正或负)振幅的形式对信息进行适当编码,而在另一个全息图中以非负振幅的形式进行编码,这使得人们在输入和输出平面中仅处理非负量,从而避免了使用多个通道和相干检测。对该方案的性能进行了分析评估。此外,上述编码可以适用于非零平均记忆状态的情况以及与霍普菲尔德算法相关的高阶模型。给出了数值模拟和实验结果以说明分析情况。