Suppr超能文献

低阈值热伤害感受的阈值和速率敏感性。

Threshold and rate sensitivity of low-threshold thermal nociception.

机构信息

The John B. Pierce Laboratory, New Haven, CT 06519, USA.

出版信息

Eur J Neurosci. 2010 May;31(9):1637-45. doi: 10.1111/j.1460-9568.2010.07201.x.

Abstract

Previous studies have shown that sensations of burning, stinging or pricking can be evoked by warming or cooling the skin to innocuous temperatures [low-threshold thermal nociception (LTN)] below the thresholds of cold- and heat-sensitive nociceptors. LTN implies that some primary afferent fibers classically defined as warm and cold fibers relay stimulation to the nociceptive system. We addressed this question in humans by determining if different adaptation temperatures (ATs) and rates of temperature change would affect thermal sensation and LTN similarly. In Experiment 1 subjects rated the intensity of warmth, cold and nociceptive sensations produced by increasing steps in temperature (+/-0.5 degrees C increments) from ATs of 35, 33 and 31 degrees C for cooling, and 30, 32 and 34 degrees C for heating. Depending upon the AT, thresholds for nociceptive and thermal sensations estimated from the rating data differed by as little as -1.0 degrees C for cooling and +1.5 degrees C for heating. Thresholds of thermal and nociceptive sensations shifted by similar amounts across the three ATs during cooling, whereas during heating the nociceptive threshold was significantly affected only between ATs of 32 and 34 degrees C. In Experiment 2, increasing the rate of temperature change from 0.5 to 4.0 degrees C/s increased the intensity of thermal and nociceptive sensations significantly but the effect was greatest for nociceptive sensations during heating. The results of both experiments are consistent with the mediation of LTN by low-threshold thermoreceptors, although LTN caused by heating may depend on a subset of fibers that express less sensitive TRP channels than those that serve sensations of warmth at the mildest temperatures.

摘要

先前的研究表明,通过将皮肤加热或冷却到低于冷敏和热敏感受器阈值的无害温度(低温阈值痛觉(LTN)),可以引起烧灼感、刺痛感或刺痛感。LTN 意味着一些经典定义为温暖和寒冷纤维的初级传入纤维将刺激传递到伤害感受系统。我们通过确定不同的适应温度(AT)和温度变化率是否会以相似的方式影响热感觉和 LTN 来解决这个问题。在实验 1 中,受试者根据从冷却的 35、33 和 31°C 和加热的 30、32 和 34°C 的 AT 逐渐增加温度(+/-0.5°C 增量)来评定温暖、寒冷和伤害性感觉的强度。根据 AT,从评分数据估计的伤害性和热感觉阈值相差不超过-1.0°C 用于冷却和+1.5°C 用于加热。在冷却过程中,三个 AT 之间热和伤害性感觉的阈值变化相似,而在加热过程中,仅在 32 和 34°C 之间的 AT 之间,伤害性阈值受到显著影响。在实验 2 中,将温度变化率从 0.5°C/s 增加到 4.0°C/s 显著增加了热和伤害性感觉的强度,但在加热过程中,伤害性感觉的效果最大。这两个实验的结果都与 LTN 由低阈值热敏感受器介导一致,尽管加热引起的 LTN 可能取决于表达比在最温和温度下用于温暖感觉的 TRP 通道更不敏感的纤维子集。

相似文献

1
Threshold and rate sensitivity of low-threshold thermal nociception.
Eur J Neurosci. 2010 May;31(9):1637-45. doi: 10.1111/j.1460-9568.2010.07201.x.
2
Nociceptive sensations evoked from 'spots' in the skin by mild cooling and heating.
Pain. 2008 Mar;135(1-2):196-208. doi: 10.1016/j.pain.2007.11.013. Epub 2008 Jan 14.
4
Innocuous cooling can produce nociceptive sensations that are inhibited during dynamic mechanical contact.
Exp Brain Res. 2003 Feb;148(3):290-9. doi: 10.1007/s00221-002-1280-9. Epub 2002 Dec 10.
5
Sensory determinants of thermal pain.
Brain. 2002 Mar;125(Pt 3):501-10. doi: 10.1093/brain/awf055.
7
Evidence that tactile stimulation inhibits nociceptive sensations produced by innocuous contact cooling.
Behav Brain Res. 2005 Jul 1;162(1):90-8. doi: 10.1016/j.bbr.2005.03.015. Epub 2005 Apr 13.
8
Temperature perception on the hand during static versus dynamic contact with a surface.
Atten Percept Psychophys. 2009 Jul;71(5):1185-96. doi: 10.3758/APP.71.5.1185.
9
Thermal and nociceptive sensations from menthol and their suppression by dynamic contact.
Behav Brain Res. 2007 Jan 25;176(2):284-91. doi: 10.1016/j.bbr.2006.10.013. Epub 2006 Nov 7.
10
Effect of ambient temperature on human pain and temperature perception.
Anesthesiology. 2000 Mar;92(3):699-707. doi: 10.1097/00000542-200003000-00014.

引用本文的文献

1
The thermal sensation threshold and its reliability induced by the exposure to 28 GHz millimeter-wave.
Front Neurosci. 2024 Feb 27;18:1331416. doi: 10.3389/fnins.2024.1331416. eCollection 2024.
2
Evoking natural thermal perceptions using a thin-film thermoelectric device with high cooling power density and speed.
Nat Biomed Eng. 2024 Aug;8(8):1004-1017. doi: 10.1038/s41551-023-01070-w. Epub 2023 Jul 27.
3
When cooling of the skin is perceived as warmth: Enhanced paradoxical heat sensation by pre-cooling of the skin in healthy individuals.
Temperature (Austin). 2022 Jul 22;10(2):248-263. doi: 10.1080/23328940.2022.2088028. eCollection 2023.
6
Exploitation of Thermal Sensitivity and Hyperalgesia in a Mouse Model of Dystonia.
Life (Basel). 2021 Sep 19;11(9):985. doi: 10.3390/life11090985.
7
The Operant Plantar Thermal Assay: A Novel Device for Assessing Thermal Pain Tolerance in Mice.
eNeuro. 2020 Mar 17;7(2). doi: 10.1523/ENEURO.0210-19.2020. Print 2020 Mar/Apr.
8
Efferent Inputs Are Required for Normal Function of Vestibular Nerve Afferents.
J Neurosci. 2019 Aug 28;39(35):6922-6935. doi: 10.1523/JNEUROSCI.0237-19.2019. Epub 2019 Jul 8.

本文引用的文献

1
Unmyelinated afferents in human skin and their responsiveness to low temperature.
Neurosci Lett. 2010 Feb 19;470(3):188-92. doi: 10.1016/j.neulet.2009.06.089. Epub 2009 Jul 2.
2
Converting cold into pain.
Exp Brain Res. 2009 Jun;196(1):13-30. doi: 10.1007/s00221-009-1797-2. Epub 2009 Apr 28.
4
Molecular and cellular limits to somatosensory specificity.
Mol Pain. 2008 Apr 18;4:14. doi: 10.1186/1744-8069-4-14.
5
Low threshold nociceptors: a challenge to sensory physiology.
Pain. 2008 Mar;135(1-2):5-6. doi: 10.1016/j.pain.2007.12.012. Epub 2008 Jan 28.
6
Nociceptive sensations evoked from 'spots' in the skin by mild cooling and heating.
Pain. 2008 Mar;135(1-2):196-208. doi: 10.1016/j.pain.2007.11.013. Epub 2008 Jan 14.
8
Variations in Thermal Sensitivity.
Science. 1961 Jul 14;134(3472):104-5. doi: 10.1126/science.134.3472.104.
9
Modulation of oral heat and cold pain by irritant chemicals.
Chem Senses. 2008 Jan;33(1):3-15. doi: 10.1093/chemse/bjm056. Epub 2007 Aug 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验