Kwiatkowski D, Nowak M
Institute of Molecular Medicine, Oxford University, John Radcliffe Hospital, United Kingdom.
Proc Natl Acad Sci U S A. 1991 Jun 15;88(12):5111-3. doi: 10.1073/pnas.88.12.5111.
It has been recognized since ancient times that malaria fever is highly periodic but the mechanism has been poorly understood. Malaria fever is related to the parasite growth cycle in erythrocytes. After a fixed period of replication, a mature parasite (schizont) causes the infected erythrocyte to rupture, releasing progeny that quickly invade other erythrocytes. Simultaneous rupture of a large number of schizonts stimulates a host fever response. Febrile temperatures are damaging to Plasmodium falciparum, particularly in the second half of its 48-hr replicative cycle. Using a mathematical model, we show that these interactions naturally tend to generate periodic fever. The model predicts chaotic parasite population dynamics at high multiplication rates, consistent with the classical observation that P. falciparum causes less regular fever than other species of parasite.
自古以来,人们就认识到疟疾热具有高度的周期性,但对其机制却知之甚少。疟疾热与疟原虫在红细胞中的生长周期有关。经过一段固定的复制期后,成熟的疟原虫(裂殖体)会导致被感染的红细胞破裂,释放出后代,这些后代会迅速侵入其他红细胞。大量裂殖体同时破裂会刺激宿主产生发热反应。发热温度对恶性疟原虫具有损害作用,尤其是在其48小时复制周期的后半段。通过一个数学模型,我们表明这些相互作用自然倾向于产生周期性发热。该模型预测,在高繁殖率下疟原虫种群动态会出现混沌,这与经典观察结果一致,即恶性疟原虫引起的发热比其他疟原虫种类更不规律。