Moran P R
Bowman Gray School of Medicine, Wake Forest University, Winston-Salem, NC 27103.
Radiology. 1991 Jul;180(1):115-9. doi: 10.1148/radiology.180.1.2052676.
Two theories of motion-sensitive phase shifts in magnetic resonance (MR) imaging result in different mathematical predictions of the observed effects of gradient modulation-induced motion artifacts. The consequences are critical for gradient waveform designed to minimize motion artifact contaminations from time-dependent motion sensitivity. To resolve this discrepancy with a test case (the monopolar waveform of a commonly used, discretely pulsed encoding phase gradient), computer integration of the fundamental Bloch equations for MR imaging with motion was performed. Simulation images for constant and erratic motion showed almost complete agreement with the predictions of the transport integral solutions for motion phase sensitivity; the artifact was solely time-of-flight oblique flow misregistration. Conventional method-of-moments gradient moment nulling compensations produced greater motion artifacts in experiments than did use of no waveform compensation at all. Transport equation solutions implied second-integral zeroing instead; these modifications eliminated the artifacts.
磁共振成像中运动敏感相移的两种理论,对梯度调制引起的运动伪影的观测效应产生了不同的数学预测。这一结果对于旨在最小化随时间变化的运动敏感性所导致的运动伪影污染的梯度波形设计至关重要。为了通过一个测试案例(常用的离散脉冲编码相位梯度的单极波形)来解决这一差异,对磁共振成像中带有运动的基本布洛赫方程进行了计算机积分。恒定运动和不规则运动的模拟图像与运动相位敏感性的输运积分解的预测结果几乎完全一致;伪影仅为飞行时间斜流配准错误。传统的矩量法梯度矩归零补偿在实验中产生的运动伪影比完全不使用波形补偿时还要大。而输运方程解则意味着应进行二次积分归零;这些修正消除了伪影。