Centre de Recherche Université Laval Robert-Giffard, Québec, Canada.
Brain Struct Funct. 2010 Jul;215(1):49-65. doi: 10.1007/s00429-010-0273-x. Epub 2010 Jun 6.
Chemically mediated synaptic transmission results from fusion of synaptic vesicles with the presynaptic plasma membrane, subsequent release of the vesicular content into the cleft and binding to postsynaptic receptors. Previous modelling studies of excitatory neurotransmitter glutamate were based on simplified geometries failing to account for the biologically realistic synaptic environment, in particular, the presence of astrocytes, the geometry of extracellular space, and the neurotransmitter uptake mechanism. Using 3-dimensional reconstructions of hippocampal glutamatergic synapses including the surrounding astrocytic processes we have developed a biologically realistic model to analyse receptor activation in different conditions. We used the finite element method to simulate glutamate release, analyse glutamate diffusion following single and multiple vesicle release and binding at the postsynaptic site to AMPA and NMDA receptors. We demonstrate that: (1) the transmitter diffusion is highly temperature-sensitive; (2) release conditions and geometry more specifically affect AMPARs than NMDARs; (3) the sensitivities of AMPARs and NMDARs to simultaneous vesicular release are different; (4) in the case of multivesicle neurotransmitter release with variable delays, the binding of glutamate to AMPARs is additive up to 1 ms after the release, then becomes independent, but to NMDARs the binding is additive up to 33 ms; (5) the number of AMPARs varies more than the number of NMDRs in response to the input firing patterns; (6) the presence of astrocytes effectively blocks synaptic cross-talk; and (7) synaptic cross-talk, mediated by NMDARs but not AMPARs, is only possible after quasi-simultaneous multivesicular release at physiological temperature (35 degrees C) without intervening astrocytes, but not at 25 degrees C. Our simulations demonstrate the importance of temperature and ultrastructural synaptic environment in synaptic transmission and synaptic cross-talk.
化学介导的突触传递是由于突触小泡与突触前质膜融合,随后将囊泡内容物释放到间隙中,并与突触后受体结合。先前关于兴奋性神经递质谷氨酸的建模研究基于简化的几何形状,无法解释生物现实的突触环境,特别是星形胶质细胞的存在、细胞外空间的几何形状和神经递质摄取机制。我们使用包括周围星形胶质细胞过程在内的海马谷氨酸能突触的 3 维重建,开发了一个生物现实的模型来分析不同条件下的受体激活。我们使用有限元方法模拟谷氨酸释放,分析单次和多次囊泡释放后谷氨酸的扩散,以及在突触后位点与 AMPA 和 NMDA 受体的结合。我们证明:(1)递质扩散对温度非常敏感;(2)释放条件和几何形状更具体地影响 AMPAR 而不是 NMDA;(3)AMPA 和 NMDA 对同时囊泡释放的敏感性不同;(4)在具有可变延迟的多泡神经递质释放的情况下,谷氨酸与 AMPAR 的结合在释放后 1ms 内是相加的,然后变得独立,但对于 NMDA,结合在 33ms 内是相加的;(5)与输入发射模式相比,AMPA 的数量变化大于 NMDR 的数量;(6)星形胶质细胞的存在有效地阻止了突触串扰;(7)突触串扰,由 NMDA 介导但不由 AMPA 介导,只有在生理温度(35°C)下准同时多泡释放而没有中间星形胶质细胞时才是可能的,但在 25°C 时则不可能。我们的模拟表明了温度和超微结构突触环境在突触传递和突触串扰中的重要性。