Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan, ROC.
BMC Bioinformatics. 2010 Jun 8;11:308. doi: 10.1186/1471-2105-11-308.
Signal transduction is the major mechanism through which cells transmit external stimuli to evoke intracellular biochemical responses. Diverse cellular stimuli create a wide variety of transcription factor activities through signal transduction pathways, resulting in different gene expression patterns. Understanding the relationship between external stimuli and the corresponding cellular responses, as well as the subsequent effects on downstream genes, is a major challenge in systems biology. Thus, a systematic approach is needed to integrate experimental data and theoretical hypotheses to identify the physiological consequences of environmental stimuli.
We proposed a systematic approach that combines forward and reverse engineering to link the signal transduction cascade with the gene responses. To demonstrate the feasibility of our strategy, we focused on linking the NF-kappaB signaling pathway with the inflammatory gene regulatory responses because NF-kappaB has long been recognized to play a crucial role in inflammation. We first utilized forward engineering (Hybrid Functional Petri Nets) to construct the NF-kappaB signaling pathway and reverse engineering (Network Components Analysis) to build a gene regulatory network (GRN). Then, we demonstrated that the corresponding IKK profiles can be identified in the GRN and are consistent with the experimental validation of the IKK kinase assay. We found that the time-lapse gene expression of several cytokines and chemokines (TNF-alpha, IL-1, IL-6, CXCL1, CXCL2 and CCL3) is concordant with the NF-kappaB activity profile, and these genes have stronger influence strength within the GRN. Such regulatory effects have highlighted the crucial roles of NF-kappaB signaling in the acute inflammatory response and enhance our understanding of the systemic inflammatory response syndrome.
We successfully identified and distinguished the corresponding signaling profiles among three microarray datasets with different stimuli strengths. In our model, the crucial genes of the NF-kappaB regulatory network were also identified to reflect the biological consequences of inflammation. With the experimental validation, our strategy is thus an effective solution to decipher cross-talk effects when attempting to integrate new kinetic parameters from other signal transduction pathways. The strategy also provides new insight for systems biology modeling to link any signal transduction pathways with the responses of downstream genes of interest.
信号转导是细胞将外部刺激传递到细胞内引发生化反应的主要机制。通过信号转导途径,各种细胞刺激产生广泛的转录因子活性,导致不同的基因表达模式。了解外部刺激与相应的细胞反应之间的关系,以及随后对下游基因的影响,是系统生物学的主要挑战。因此,需要一种系统的方法来整合实验数据和理论假设,以确定环境刺激的生理后果。
我们提出了一种系统的方法,将正向和反向工程相结合,将信号转导级联与基因反应联系起来。为了证明我们策略的可行性,我们专注于将 NF-κB 信号通路与炎症基因调控反应联系起来,因为 NF-κB 长期以来被认为在炎症中起着至关重要的作用。我们首先利用正向工程(混合功能 Petri 网)构建 NF-κB 信号通路,然后利用反向工程(网络组件分析)构建基因调控网络(GRN)。然后,我们证明了在 GRN 中可以识别相应的 IKK 谱,并且与 IKK 激酶测定的实验验证一致。我们发现,几种细胞因子和趋化因子(TNF-α、IL-1、IL-6、CXCL1、CXCL2 和 CCL3)的时程基因表达与 NF-κB 活性谱一致,并且这些基因在 GRN 中具有更强的影响强度。这种调节作用突出了 NF-κB 信号在急性炎症反应中的关键作用,并增强了我们对全身炎症反应综合征的理解。
我们成功地在三个具有不同刺激强度的微阵列数据集之间识别和区分了相应的信号谱。在我们的模型中,NF-κB 调控网络的关键基因也被识别出来,以反映炎症的生物学后果。通过实验验证,我们的策略因此是一种有效的解决方案,可以在试图整合来自其他信号转导途径的新动力学参数时,解决串扰效应。该策略还为系统生物学建模提供了新的见解,将任何信号转导途径与感兴趣的下游基因的反应联系起来。