Cancer Biology and Inflammatory Disorder Division, Indian Institute of Chemical Biology, Kolkata, India.
Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Kolkata, India.
PLoS Comput Biol. 2019 Aug 6;15(8):e1007090. doi: 10.1371/journal.pcbi.1007090. eCollection 2019 Aug.
As malignant transformation requires synchronization of growth-driving signaling (S) and metabolic (M) pathways, defining cancer-specific S-M interconnected networks (SMINs) could lead to better understanding of oncogenic processes. In a systems-biology approach, we developed a mathematical model for SMINs in mutated EGF receptor (EGFRvIII) compared to wild-type EGF receptor (EGFRwt) expressing glioblastoma multiforme (GBM). Starting with experimentally validated human protein-protein interactome data for S-M pathways, and incorporating proteomic data for EGFRvIII and EGFRwt GBM cells and patient transcriptomic data, we designed a dynamic model for EGFR-driven GBM-specific information flow. Key nodes and paths identified by in silico perturbation were validated experimentally when inhibition of signaling pathway proteins altered expression of metabolic proteins as predicted by the model. This demonstrated capacity of the model to identify unknown connections between signaling and metabolic pathways, explain the robustness of oncogenic SMINs, predict drug escape, and assist identification of drug targets and the development of combination therapies.
由于恶性转化需要生长驱动信号(S)和代谢(M)途径的同步,因此定义癌症特异性 S-M 相互连接网络(SMINs)可以帮助更好地理解致癌过程。在系统生物学方法中,我们针对突变型表皮生长因子受体(EGFRvIII)与野生型表皮生长因子受体(EGFRwt)表达的多形性胶质母细胞瘤(GBM)之间的 SMINs 开发了一个数学模型。该模型从 S-M 途径的实验验证的人类蛋白质 - 蛋白质互作组数据开始,并结合 EGFRvIII 和 EGFRwt GBM 细胞的蛋白质组学数据以及患者转录组学数据,设计了一个用于 EGFR 驱动的 GBM 特异性信息流的动态模型。通过计算机模拟干扰识别出的关键节点和路径,当抑制信号通路蛋白时,如模型预测的那样,代谢蛋白的表达会发生改变,这些节点和路径的实验验证证明了该模型识别信号和代谢途径之间未知连接的能力,解释了致癌性 SMINs 的稳健性,预测了药物逃逸,并协助识别药物靶点和开发联合疗法。