Institute of Biology and Environmental Sciences, Section of Biochemistry, University of Oldenburg, Oldenburg, Germany.
PLoS One. 2010 Jun 3;5(6):e10949. doi: 10.1371/journal.pone.0010949.
Nanoparticles in contact with biological fluids interact with proteins and other biomolecules, thus forming a dynamic corona whose composition varies over time due to continuous protein association and dissociation events. Eventually equilibrium is reached, at which point the continued exchange will not affect the composition of the corona.
We developed a simple and effective dynamic model of the nanoparticle protein corona in a body fluid, namely human plasma. The model predicts the time evolution and equilibrium composition of the corona based on affinities, stoichiometries and rate constants. An application to the interaction of human serum albumin, high density lipoprotein (HDL) and fibrinogen with 70 nm N-iso-propylacrylamide/N-tert-butylacrylamide copolymer nanoparticles is presented, including novel experimental data for HDL.
The simple model presented here can easily be modified to mimic the interaction of the nanoparticle protein corona with a novel biological fluid or compartment once new data will be available, thus opening novel applications in nanotoxicity and nanomedicine.
与生物流体接触的纳米颗粒会与蛋白质和其他生物分子相互作用,从而形成一个动态的冠层,其组成会因持续的蛋白质结合和解离事件而随时间变化。最终会达到平衡,此时继续交换不会影响冠层的组成。
我们开发了一种简单有效的纳米颗粒蛋白冠在体液(即人血浆)中的动力学模型。该模型基于亲和力、化学计量和速率常数来预测冠的时间演变和平衡组成。本文应用于人血清白蛋白、高密度脂蛋白(HDL)和纤维蛋白原与 70nmN-异丙基丙烯酰胺/N-叔丁基丙烯酰胺共聚物纳米颗粒的相互作用,包括 HDL 的新实验数据。
本文提出的简单模型可以很容易地进行修改,以模拟纳米颗粒蛋白冠与新的生物流体或隔室的相互作用,一旦有新的数据可用,从而在纳米毒性和纳米医学领域开辟新的应用。