Suppr超能文献

AFMPB:一种用于计算生物分子系统静电学的自适应快速多极泊松-玻尔兹曼求解器

AFMPB: An Adaptive Fast Multipole Poisson-Boltzmann Solver for Calculating Electrostatics in Biomolecular Systems.

作者信息

Lu Benzhuo, Cheng Xiaolin, Huang Jingfang, McCammon J Andrew

机构信息

State Key Laboratory of Scientific/Engineering Computing, Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100910, China.

出版信息

Comput Phys Commun. 2010 Jun 1;181(6):1150-1160. doi: 10.1016/j.cpc.2010.02.015.

Abstract

A Fortran program package is introduced for rapid evaluation of the electrostatic potentials and forces in biomolecular systems modeled by the linearized Poisson-Boltzmann equation. The numerical solver utilizes a well-conditioned boundary integral equation (BIE) formulation, a node-patch discretization scheme, a Krylov subspace iterative solver package with reverse communication protocols, and an adaptive new version of fast multipole method in which the exponential expansions are used to diagonalize the multipole to local translations. The program and its full description, as well as several closely related libraries and utility tools are available at http://lsec.cc.ac.cn/lubz/afmpb.html and a mirror site at http://mccammon.ucsd.edu/. This paper is a brief summary of the program: the algorithms, the implementation and the usage.

摘要

介绍了一个Fortran程序包,用于快速评估由线性化泊松-玻尔兹曼方程建模的生物分子系统中的静电势和力。数值求解器采用了条件良好的边界积分方程(BIE)公式、节点面片离散化方案、具有反向通信协议的 Krylov 子空间迭代求解器包,以及一种自适应的新版本快速多极方法,其中使用指数展开来对角化多极到局部平移。该程序及其完整描述,以及几个密切相关的库和实用工具可在http://lsec.cc.ac.cn/lubz/afmpb.html以及http://mccammon.ucsd.edu/的镜像站点获取。本文是该程序的简要总结:算法、实现和用法。

相似文献

1
AFMPB: An Adaptive Fast Multipole Poisson-Boltzmann Solver for Calculating Electrostatics in Biomolecular Systems.
Comput Phys Commun. 2010 Jun 1;181(6):1150-1160. doi: 10.1016/j.cpc.2010.02.015.
2
"New-version-fast-multipole-method" accelerated electrostatic interactions in biomolecular systems.
J Comput Phys. 2007 Oct 1;226(2):1348-1366. doi: 10.1016/j.jcp.2007.05.026.
3
An Adaptive Fast Multipole Boundary Element Method for Poisson-Boltzmann Electrostatics.
J Chem Theory Comput. 2009 Jun 9;5(6):1692-1699. doi: 10.1021/ct900083k. Epub 2009 May 21.
4
Order N algorithm for computation of electrostatic interactions in biomolecular systems.
Proc Natl Acad Sci U S A. 2006 Dec 19;103(51):19314-9. doi: 10.1073/pnas.0605166103. Epub 2006 Dec 5.
5
TABI-PB 2.0: An Improved Version of the Treecode-Accelerated Boundary Integral Poisson-Boltzmann Solver.
J Phys Chem B. 2022 Sep 22;126(37):7104-7113. doi: 10.1021/acs.jpcb.2c04604. Epub 2022 Sep 13.
7
A Boundary-Integral Approach for the Poisson-Boltzmann Equation with Polarizable Force Fields.
J Comput Chem. 2019 Jul 5;40(18):1680-1692. doi: 10.1002/jcc.25820. Epub 2019 Mar 19.
8
An accelerated nonlocal Poisson-Boltzmann equation solver for electrostatics of biomolecule.
Int J Numer Method Biomed Eng. 2018 Nov;34(11):e3129. doi: 10.1002/cnm.3129. Epub 2018 Aug 21.
10
ARGOS: An adaptive refinement goal-oriented solver for the linearized Poisson-Boltzmann equation.
J Comput Chem. 2021 Oct 5;42(26):1832-1860. doi: 10.1002/jcc.26716. Epub 2021 Jul 24.

引用本文的文献

1
Poisson-Boltzmann-based machine learning model for electrostatic analysis.
Biophys J. 2024 Sep 3;123(17):2807-2814. doi: 10.1016/j.bpj.2024.02.008. Epub 2024 Feb 15.
2
MLIMC: Machine Learning-Based Implicit-Solvent Monte Carlo.
Chi J Chem Phys. 2021 Dec 27;34(6):683-694. doi: 10.1063/1674-0068/cjcp2109150.
3
Frontiers in biomolecular mesh generation and molecular visualization systems.
Vis Comput Ind Biomed Art. 2018 Sep 5;1(1):7. doi: 10.1186/s42492-018-0007-0.
4
Robustness and Efficiency of Poisson-Boltzmann Modeling on Graphics Processing Units.
J Chem Inf Model. 2019 Jan 28;59(1):409-420. doi: 10.1021/acs.jcim.8b00761. Epub 2018 Dec 31.
5
Molecular Surface Remeshing with Local Region Refinement.
Int J Mol Sci. 2018 May 6;19(5):1383. doi: 10.3390/ijms19051383.
6
Divalent Ion-Mediated DNA-DNA Interactions: A Comparative Study of Triplex and Duplex.
Biophys J. 2017 Aug 8;113(3):517-528. doi: 10.1016/j.bpj.2017.06.021.
7
Accurate, robust, and reliable calculations of Poisson-Boltzmann binding energies.
J Comput Chem. 2017 May 15;38(13):941-948. doi: 10.1002/jcc.24757. Epub 2017 Feb 16.
8
PB-AM: An open-source, fully analytical linear poisson-boltzmann solver.
J Comput Chem. 2017 Jun 5;38(15):1275-1282. doi: 10.1002/jcc.24528. Epub 2016 Nov 2.
9
Multivalent ion-mediated nucleic acid helix-helix interactions: RNA versus DNA.
Nucleic Acids Res. 2015 Jul 13;43(12):6156-65. doi: 10.1093/nar/gkv570. Epub 2015 May 27.
10
Parameterization for molecular Gaussian surface and a comparison study of surface mesh generation.
J Mol Model. 2015 May;21(5):113. doi: 10.1007/s00894-015-2654-9. Epub 2015 Apr 12.

本文引用的文献

1
2
"New-version-fast-multipole-method" accelerated electrostatic interactions in biomolecular systems.
J Comput Phys. 2007 Oct 1;226(2):1348-1366. doi: 10.1016/j.jcp.2007.05.026.
3
Order N algorithm for computation of electrostatic interactions in biomolecular systems.
Proc Natl Acad Sci U S A. 2006 Dec 19;103(51):19314-9. doi: 10.1073/pnas.0605166103. Epub 2006 Dec 5.
4
Poisson-Boltzmann methods for biomolecular electrostatics.
Methods Enzymol. 2004;383:94-118. doi: 10.1016/S0076-6879(04)83005-2.
5
Electrostatics of nanosystems: application to microtubules and the ribosome.
Proc Natl Acad Sci U S A. 2001 Aug 28;98(18):10037-41. doi: 10.1073/pnas.181342398. Epub 2001 Aug 21.
6
Computation of molecular electrostatics with boundary element methods.
Biophys J. 1997 Oct;73(4):1830-41. doi: 10.1016/S0006-3495(97)78213-4.
7
Reduced surface: an efficient way to compute molecular surfaces.
Biopolymers. 1996 Mar;38(3):305-20. doi: 10.1002/(SICI)1097-0282(199603)38:3%3C305::AID-BIP4%3E3.0.CO;2-Y.
8
Areas, volumes, packing and protein structure.
Annu Rev Biophys Bioeng. 1977;6:151-76. doi: 10.1146/annurev.bb.06.060177.001055.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验