Suppr超能文献

准确、稳健、可靠的泊松-玻尔兹曼结合能计算。

Accurate, robust, and reliable calculations of Poisson-Boltzmann binding energies.

机构信息

Department of Mathematics, Michigan State University, Michigan, 48824.

Department of Electrical and Computer Engineering, Michigan State University, Michigan, 48824.

出版信息

J Comput Chem. 2017 May 15;38(13):941-948. doi: 10.1002/jcc.24757. Epub 2017 Feb 16.

Abstract

Poisson-Boltzmann (PB) model is one of the most popular implicit solvent models in biophysical modeling and computation. The ability of providing accurate and reliable PB estimation of electrostatic solvation free energy, ΔGel, and binding free energy, ΔΔGel, is important to computational biophysics and biochemistry. In this work, we investigate the grid dependence of our PB solver (MIBPB) with solvent excluded surfaces for estimating both electrostatic solvation free energies and electrostatic binding free energies. It is found that the relative absolute error of ΔGel obtained at the grid spacing of 1.0 Å compared to ΔGel at 0.2 Å averaged over 153 molecules is less than 0.2%. Our results indicate that the use of grid spacing 0.6 Å ensures accuracy and reliability in ΔΔGel calculation. In fact, the grid spacing of 1.1 Å appears to deliver adequate accuracy for high throughput screening. © 2017 Wiley Periodicals, Inc.

摘要

泊松-玻尔兹曼(PB)模型是生物物理建模和计算中最流行的隐溶剂模型之一。为计算生物物理学和生物化学提供准确可靠的静电溶剂化自由能ΔGel 和结合自由能ΔΔGel 的 PB 估算能力非常重要。在这项工作中,我们研究了溶剂排除表面的 PB 求解器(MIBPB)的网格依赖性,以估算静电溶剂化自由能和静电结合自由能。结果发现,与 0.2 Å 相比,在 1.0 Å 的网格间距下获得的ΔGel 的相对绝对误差在 153 个分子上的平均值小于 0.2%。我们的结果表明,使用 0.6 Å 的网格间距可确保ΔΔGel 计算的准确性和可靠性。实际上,1.1 Å 的网格间距似乎可提供用于高通量筛选的足够精度。©2017Wiley Periodicals, Inc.

相似文献

1
Accurate, robust, and reliable calculations of Poisson-Boltzmann binding energies.
J Comput Chem. 2017 May 15;38(13):941-948. doi: 10.1002/jcc.24757. Epub 2017 Feb 16.
2
Problems of robustness in Poisson-Boltzmann binding free energies.
J Chem Theory Comput. 2015 Feb 10;11(2):705-12. doi: 10.1021/ct5005017.
3
Treatment of geometric singularities in implicit solvent models.
J Chem Phys. 2007 Jun 28;126(24):244108. doi: 10.1063/1.2743020.
4
Influence of Grid Spacing in Poisson-Boltzmann Equation Binding Energy Estimation.
J Chem Theory Comput. 2013 Aug 13;9(8):3677-3685. doi: 10.1021/ct300765w.
5
Combining the polarizable Drude force field with a continuum electrostatic Poisson-Boltzmann implicit solvation model.
J Comput Chem. 2018 Aug 15;39(22):1707-1719. doi: 10.1002/jcc.25345. Epub 2018 May 8.
6
MIBPB: a software package for electrostatic analysis.
J Comput Chem. 2011 Mar;32(4):756-70. doi: 10.1002/jcc.21646. Epub 2010 Sep 15.
7
Features of CPB: a Poisson-Boltzmann solver that uses an adaptive Cartesian grid.
J Comput Chem. 2015 Feb 5;36(4):235-43. doi: 10.1002/jcc.23791. Epub 2014 Nov 27.
8
Grid-Based Surface Generalized Born Model for Calculation of Electrostatic Binding Free Energies.
J Chem Inf Model. 2017 Oct 23;57(10):2505-2513. doi: 10.1021/acs.jcim.7b00192. Epub 2017 Oct 5.
9
Comparison of the MSMS and NanoShaper molecular surface triangulation codes in the TABI Poisson-Boltzmann solver.
J Comput Chem. 2021 Aug 15;42(22):1552-1560. doi: 10.1002/jcc.26692. Epub 2021 May 26.
10
A new set of atomic radii for accurate estimation of solvation free energy by Poisson-Boltzmann solvent model.
J Comput Chem. 2014 Nov 5;35(29):2132-9. doi: 10.1002/jcc.23728. Epub 2014 Sep 15.

引用本文的文献

1
Poisson-Boltzmann-based machine learning model for electrostatic analysis.
Biophys J. 2024 Sep 3;123(17):2807-2814. doi: 10.1016/j.bpj.2024.02.008. Epub 2024 Feb 15.
2
Developing an Implicit Solvation Machine Learning Model for Molecular Simulations of Ionic Media.
J Chem Theory Comput. 2024 Jan 9;20(1):411-420. doi: 10.1021/acs.jctc.3c00984. Epub 2023 Dec 20.
3
Bridging Eulerian and Lagrangian Poisson-Boltzmann solvers by ESES.
J Comput Chem. 2024 Mar 5;45(6):306-320. doi: 10.1002/jcc.27239. Epub 2023 Oct 13.
4
Computational modeling of protein conformational changes - Application to the opening SARS-CoV-2 spike.
J Comput Phys. 2021 Nov 1;444:110591. doi: 10.1016/j.jcp.2021.110591. Epub 2021 Jul 26.
5
A Closed-Form, Analytical Approximation for Apparent Surface Charge and Electric Field of Molecules.
ACS Omega. 2022 Jul 19;7(30):26123-26136. doi: 10.1021/acsomega.2c01484. eCollection 2022 Aug 2.
6
MLIMC: Machine Learning-Based Implicit-Solvent Monte Carlo.
Chi J Chem Phys. 2021 Dec 27;34(6):683-694. doi: 10.1063/1674-0068/cjcp2109150.
7
Molecular Dynamics of Cobalt Protoporphyrin Antagonism of the Cancer Suppressor REV-ERBβ.
Molecules. 2021 May 28;26(11):3251. doi: 10.3390/molecules26113251.
8
The de Rham-Hodge Analysis and Modeling of Biomolecules.
Bull Math Biol. 2020 Aug 8;82(8):108. doi: 10.1007/s11538-020-00783-2.
9
An efficient second-order poisson-boltzmann method.
J Comput Chem. 2019 May 5;40(12):1257-1269. doi: 10.1002/jcc.25783. Epub 2019 Feb 18.
10
Combining the polarizable Drude force field with a continuum electrostatic Poisson-Boltzmann implicit solvation model.
J Comput Chem. 2018 Aug 15;39(22):1707-1719. doi: 10.1002/jcc.25345. Epub 2018 May 8.

本文引用的文献

1
ESES: Software for Eulerian solvent excluded surface.
J Comput Chem. 2017 Mar 15;38(7):446-466. doi: 10.1002/jcc.24682. Epub 2017 Jan 4.
3
Prediction of Absolute Solvation Free Energies using Molecular Dynamics Free Energy Perturbation and the OPLS Force Field.
J Chem Theory Comput. 2010 May 11;6(5):1509-19. doi: 10.1021/ct900587b. Epub 2010 Apr 14.
4
MIB Galerkin method for elliptic interface problems.
J Comput Appl Math. 2014 Dec 15;272:195-220. doi: 10.1016/j.cam.2014.05.014.
5
Performance of Nonlinear Finite-Difference Poisson-Boltzmann Solvers.
J Chem Theory Comput. 2010 Jan 12;6(1):203-211. doi: 10.1021/ct900381r.
6
Exploring accurate Poisson-Boltzmann methods for biomolecular simulations.
Comput Theor Chem. 2013 Nov 15;1024:34-44. doi: 10.1016/j.comptc.2013.09.021.
7
A general and robust ray-casting-based algorithm for triangulating surfaces at the nanoscale.
PLoS One. 2013;8(4):e59744. doi: 10.1371/journal.pone.0059744. Epub 2013 Apr 5.
8
Biomolecular electrostatics and solvation: a computational perspective.
Q Rev Biophys. 2012 Nov;45(4):427-91. doi: 10.1017/S003358351200011X.
9
DelPhi: a comprehensive suite for DelPhi software and associated resources.
BMC Biophys. 2012 May 14;5:9. doi: 10.1186/2046-1682-5-9.
10
MIBPB: a software package for electrostatic analysis.
J Comput Chem. 2011 Mar;32(4):756-70. doi: 10.1002/jcc.21646. Epub 2010 Sep 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验