Suppr超能文献

扩散粒子在子域中停留时间的方差。基于路径积分的方法。

Variance of residence time spent by diffusing particle in a sub-domain. Path integral based approach.

作者信息

Berezhkovskii A M

机构信息

Mathematical and Statistical Computing Laboratory, Division of Computational Bioscience, Center for Information Technology, National Institutes of Health, Bethesda, MD 20892, USA.

出版信息

Chem Phys. 2010 May 1;370(1-3):253-257. doi: 10.1016/j.chemphys.2009.10.020.

Abstract

Path integral based approach is used to analyze the variance of the residence time spent in a sub-domain by a particle diffusing in the presence of an arbitrary potential in a larger domain containing the sub-domain. It is assumed that there is no absorption of the particle within the domain or at its boundaries. Because of the ergodisity, the mean residence time in the sub-domain is a product of the observation time and the equilibrium probability of finding the particle in the sub-domain. We show that the variance also grows linearly with the observation time at large times and explain how the slope of this linear dependence can be found. The general approach is illustrated by simple examples, in which explicit formulas for the variance can be obtained.

摘要

基于路径积分的方法用于分析在包含子域的更大区域中,粒子在任意势场存在下扩散时在子域中停留时间的方差。假设在该区域内及其边界处不存在粒子吸收。由于遍历性,子域中的平均停留时间是观测时间与在子域中找到粒子的平衡概率的乘积。我们表明,在较长时间内方差也随观测时间线性增长,并解释了如何找到这种线性依赖关系的斜率。通过简单示例说明了一般方法,在这些示例中可以获得方差的显式公式。

相似文献

1
Variance of residence time spent by diffusing particle in a sub-domain. Path integral based approach.
Chem Phys. 2010 May 1;370(1-3):253-257. doi: 10.1016/j.chemphys.2009.10.020.
2
Residence times of branching diffusion processes.
Phys Rev E. 2016 Jul;94(1-1):012131. doi: 10.1103/PhysRevE.94.012131. Epub 2016 Jul 21.
3
Residence times and other functionals of reflected Brownian motion.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Oct;76(4 Pt 1):041139. doi: 10.1103/PhysRevE.76.041139. Epub 2007 Oct 30.
4
Searching for partially reactive sites: Analytical results for spherical targets.
J Chem Phys. 2010 Jan 21;132(3):034104. doi: 10.1063/1.3294882.
5
A new approach to the problem of bulk-mediated surface diffusion.
J Chem Phys. 2015 Aug 28;143(8):084103. doi: 10.1063/1.4928741.
7
Modeling diffusion in restricted systems using the heat kernel expansion.
J Chem Phys. 2010 Jun 21;132(23):234108. doi: 10.1063/1.3451124.
8
Motion of a Brownian particle in the presence of reactive boundaries.
Phys Rev E. 2019 Oct;100(4-1):042128. doi: 10.1103/PhysRevE.100.042128.
10
Path-integral formalism for stochastic resetting: Exactly solved examples and shortcuts to confinement.
Phys Rev E. 2017 Aug;96(2-1):022130. doi: 10.1103/PhysRevE.96.022130. Epub 2017 Aug 14.

本文引用的文献

1
Temporal analysis of active and passive transport in living cells.
Phys Rev Lett. 2008 Dec 12;101(24):248103. doi: 10.1103/PhysRevLett.101.248103.
2
Cytoplasmic diffusion: molecular motors mix it up.
J Cell Biol. 2008 Nov 17;183(4):583-7. doi: 10.1083/jcb.200806149. Epub 2008 Nov 10.
3
Generic schemes for single-molecule kinetics. 1: Self-consistent pathway solutions for renewal processes.
J Phys Chem B. 2008 Oct 16;112(41):12867-80. doi: 10.1021/jp803347m. Epub 2008 Sep 25.
4
Counting translocations of strongly repelling particles through single channels: fluctuation theorem for membrane transport.
Phys Rev Lett. 2008 Jan 25;100(3):038104. doi: 10.1103/PhysRevLett.100.038104. Epub 2008 Jan 24.
5
Transient diffusion in a tube with dead ends.
J Chem Phys. 2007 Dec 14;127(22):224712. doi: 10.1063/1.2805068.
6
Residence times and other functionals of reflected Brownian motion.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Oct;76(4 Pt 1):041139. doi: 10.1103/PhysRevE.76.041139. Epub 2007 Oct 30.
7
Anomalous diffusion in Purkinje cell dendrites caused by spines.
Neuron. 2006 Nov 22;52(4):635-48. doi: 10.1016/j.neuron.2006.10.025.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验