Grebenkov D S
Laboratoire de Physique de la Matière Condensée, CNRS-Ecole Polytechnique, 91128 Palaiseau, France.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Oct;76(4 Pt 1):041139. doi: 10.1103/PhysRevE.76.041139. Epub 2007 Oct 30.
We study the residence and local times for a Brownian particle confined by reflecting boundaries, and propose a general solution to the problem of finding the related probability distribution. Its Fourier transform (characteristic function) and Laplace transform (survival probability) are obtained in a compact matrix form involving the Laplace operator eigenbasis. Explicit combinatorial relations are derived for the moments, and the probability distribution is shown to be nearly Gaussian when the exploration time is long enough. When the eigenbasis (or a part of it) is known, the numerical computation of the residence time distributions is straightforward and accurate. The present approach can also be applied to investigate other functionals of reflected Brownian motion describing, in particular, restricted diffusion in an external field or potential (e.g., nuclei diffusing in an inhomogeneous magnetic field). Theoretical results for the local times are confronted with Monte Carlo simulations on the unit interval, disk, and sphere.
我们研究了受反射边界限制的布朗粒子的停留时间和局部时间,并提出了一个用于求解相关概率分布问题的通用解。其傅里叶变换(特征函数)和拉普拉斯变换(生存概率)以涉及拉普拉斯算子特征基的紧凑矩阵形式得到。推导出了矩的显式组合关系,并且当探索时间足够长时,概率分布显示为近似高斯分布。当特征基(或其一部分)已知时,停留时间分布的数值计算直接且准确。本方法还可用于研究反射布朗运动的其他泛函,特别是描述外部场或势中的受限扩散(例如,原子核在非均匀磁场中扩散)。局部时间的理论结果与在单位区间、圆盘和球面上的蒙特卡罗模拟进行了对比。