Suppr超能文献

计算进化:随意发挥

Computational evolution: taking liberties.

作者信息

Correia Luís

机构信息

LabMAg, University of Lisbon, Lisbon, Portugal.

出版信息

Theory Biosci. 2010 Sep;129(2-3):183-91. doi: 10.1007/s12064-010-0099-3. Epub 2010 Jun 9.

Abstract

Evolution has, for a long time, inspired computer scientists to produce computer models mimicking its behavior. Evolutionary algorithm (EA) is one of the areas where this approach has flourished. EAs have been used to model and study evolution, but they have been especially developed for their aptitude as optimization tools for engineering. Developed models are quite simple in comparison with their natural sources of inspiration. However, since EAs run on computers, we have the freedom, especially in optimization models, to test approaches both realistic and outright speculative, from the biological point of view. In this article, we discuss different common evolutionary algorithm models, and then present some alternatives of interest. These include biologically inspired models, such as co-evolution and, in particular, symbiogenetics and outright artificial operators and representations. In each case, the advantages of the modifications to the standard model are identified. The other area of computational evolution, which has allowed us to study basic principles of evolution and ecology dynamics, is the development of artificial life platforms for open-ended evolution of artificial organisms. With these platforms, biologists can test theories by directly manipulating individuals and operators, observing the resulting effects in a realistic way. An overview of the most prominent of such environments is also presented. If instead of artificial platforms we use the real world for evolving artificial life, then we are dealing with evolutionary robotics (ERs). A brief description of this area is presented, analyzing its relations to biology. Finally, we present the conclusions and identify future research avenues in the frontier of computation and biology. Hopefully, this will help to draw the attention of more biologists and computer scientists to the benefits of such interdisciplinary research.

摘要

长期以来,进化一直启发着计算机科学家构建模仿其行为的计算机模型。进化算法(EA)是这种方法蓬勃发展的领域之一。进化算法已被用于对进化进行建模和研究,但它们尤其因其作为工程优化工具的能力而得到发展。与它们的自然灵感来源相比,所开发的模型相当简单。然而,由于进化算法在计算机上运行,我们有自由,特别是在优化模型中,从生物学角度测试既现实又完全具有推测性的方法。在本文中,我们讨论了不同的常见进化算法模型,然后介绍了一些有趣的替代方案。这些包括受生物学启发的模型,如协同进化,特别是共生遗传学以及完全人工的算子和表示。在每种情况下,都确定了对标准模型进行修改的优点。计算进化的另一个领域是开发用于人工生物体开放式进化的人工生命平台,这使我们能够研究进化和生态动力学的基本原理。通过这些平台,生物学家可以通过直接操纵个体和算子来测试理论,以现实的方式观察产生的效果。还概述了此类最突出的环境。如果我们不是使用人工平台,而是利用现实世界来发展人工生命,那么我们就涉及到进化机器人学(ERs)。本文对这一领域进行了简要描述,分析了它与生物学的关系。最后,我们给出结论并确定计算与生物学前沿的未来研究方向。希望这将有助于吸引更多生物学家和计算机科学家关注此类跨学科研究的益处。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验