Paredis J
RIKS/MATRIKS University of Limburg, Maastricht, The Netherlands.
Artif Life. 1995 Summer;2(4):355-75. doi: 10.1162/artl.1995.2.4.355.
This article proposes a general framework for the use of coevolution to boost the performance of genetic search. It combines coevolution with yet another biologically inspired technique, called lifetime fitness evaluation (LTFE). Two unrelated problems--neural net learning and constraint satisfaction--are used to illustrate the approach. Both problems use predator-prey interactions to boost the search. In contrast with traditional "single population" genetic algorithms (GAs), two populations constantly interact and co-evolve. However, the same algorithm can also be used with different types of co-evolutionary interactions. As an example, the symbiotic coevolution of solutions and genetic representations is shown to provide an elegant solution to the problem of finding a suitable genetic representation. The approach presented here greatly profits from the partial and continuous nature of LTFE. Noise tolerance is one advantage. Even more important, LTFE is ideally suited to deal with coupled fitness landscapes typical for coevolution.
本文提出了一个使用协同进化来提高遗传搜索性能的通用框架。它将协同进化与另一种受生物启发的技术——终身适应度评估(LTFE)相结合。使用两个不相关的问题——神经网络学习和约束满足——来说明该方法。这两个问题都利用捕食者 - 猎物相互作用来促进搜索。与传统的“单种群”遗传算法(GA)不同,两个种群不断相互作用并共同进化。然而,相同的算法也可用于不同类型的协同进化相互作用。例如,解决方案与遗传表示的共生协同进化被证明为找到合适的遗传表示问题提供了一个优雅的解决方案。这里提出的方法极大地受益于LTFE的部分性和连续性。噪声容忍是一个优点。更重要的是,LTFE非常适合处理协同进化中典型的耦合适应度景观。