Institute of Radiochemistry, Forschungszentrum Dresden-Rossendorf (FZD), Bautzner Landstrasse 400, Dresden, 01328 Germany.
Chemistry. 2010 Jul 19;16(27):8029-33. doi: 10.1002/chem.201000408.
The photoluminescence of uranium(VI) is observed typically in the wavelength range 400-650 nm with the lifetime of several hundreds mus and is known to be quenched in the presence of various halide ions (case A) or alcohols (case B). Here, we show by density functional theory (DFT) calculations that the quenching involves an intermediate triplet excited state that exhibits uranium(V) character. The DFT results are consistent with previous experimental findings suggesting the presence of photoexcited uranium(V) radical pair during the quenching process. In the ground state of uranyl(VI) halides, the ligand contributions to the highest occupied molecular orbitals increase with the atomic number (Z) of halide ion allowing larger ligand-to-metal charge transfer (LMCT) between uranium and the halide ion. Consequently, a larger quenching effect is expected as Z increases. The quenching mechanism is essentially the same in cases A and B, and is driven by an electron transfer from the quencher to the UO(2)(2+) entity. The relative energetic stabilities of the triplet excited state define the "fate" of uranium, so that in case A uranium(V) is oxidized back to uranium(VI), while in case B uranium remains as pentavalent.
铀(VI)的光致发光通常在 400-650nm 的波长范围内观察到,寿命为数百微秒,并已知在存在各种卤化物离子(情况 A)或醇(情况 B)时被猝灭。在这里,我们通过密度泛函理论(DFT)计算表明,猝灭涉及表现出铀(V)特征的中间三重态激发态。DFT 结果与先前的实验结果一致,表明在猝灭过程中存在光激发的铀(V)自由基对。在铀酰(VI)卤化物的基态中,配体对最高占据分子轨道的贡献随着卤化物离子的原子数(Z)增加而增加,允许铀和卤化物离子之间更大的配体到金属电荷转移(LMCT)。因此,随着 Z 的增加,预计会有更大的猝灭效应。在情况 A 和 B 中,猝灭机制基本相同,是由猝灭剂向 UO(2)(2+)实体转移电子驱动的。三重态激发态的相对能量稳定性决定了铀的“命运”,因此在情况 A 中,铀(V)被氧化回铀(VI),而在情况 B 中,铀保持为五价。